Chang, CY, Hong IH, Chou YC, Wei CM.
2001.
Atomic structures by direct transform of diffraction patterns, Sep-Oct. Journal of Physics and Chemistry of Solids. 62:1777-1788., Number 9-10
AbstractWe propose all the diffraction patterns can be directly transformed to provide three-dimensional atomic structures for the system studied. Depending on the scattering process, either the holography or Patterson transform scheme is used. For diffraction patterns which are generated from a localized emitter source or dominated by an inelastic-scattering feature like core-level photoelectron or low-energy Kikuchi electron, holography transform is needed. On the other hand, for diffraction patterns which were dominated by elastic-scattering, like grazing-incidence X-ray diffraction, electron correlated thermal diffuse scattering or low-energy electron diffraction curves, Patterson transform is needed. To prove our point, high-fidelity and artifact-free three-dimensional atomic structures obtained by transform of low-energy Kikuchi electron patterns and low-energy electron diffraction curves are presented. The future of these direct methods by transforming diffraction patterns will be discussed. (C) 2001 Elsevier Science Ltd. All rights reserved.
Cancio, AC, Chou MY, Hood RQ.
2001.
Comparative study of density-functional theories of the exchange-correlation hole and energy in silicon, Sep. Physical Review B. 64:15., Number 11
AbstractWe present a detailed study of the exchange-correlation hole and exchange-correlation energy per particle in the Si crystal as calculated by the variational Monte Carlo method and predicted by various density-functional models. Nonlocal density-averaging methods prove to be successful in correcting severe errors in the local-density approximation (LDA) at low densities where the density changes dramatically over the correlation length of the LDA hole. but fail to provide systematic improvements at higher densities where the effects of density inhomogeneity are more subtle. Exchange and correlation considered separately show a sensitivity to the nonlocal semiconductor-crystal environment, particularly within the Si bond. which is not predicted by the nonlocal approaches based on density averaging. The exchange hole is well described by a bonding-orbital picture, while the correlation hole has a significant component due to the polarization of the nearby bonds, which partially screens out the anisotropy in the exchange hole.
Chen, YC, Liao YA, Chiu HY, Su JJ, Yu IA.
2001.
Observation of the quantum interference phenomenon induced by interacting dark resonances, Nov. Physical Review A. 64:5., Number 5
AbstractWe report an experimental observation of narrow and high-contrast spectra. which are induced by interacting dark resonances and have been predicted in Phys. Rev. A 60, 3225 (1999). Spectra are measured with cold (87)Rb atoms produced by a magneto-optical trap. In this experimental system, a coupling laser and a weak probe laser form a three-level Lambda -type configuration of electromagnetically induced transparency (EIT); a microwave drives a magnetic-dipole transition between the fourth level and the ground state that is coupled with the excited state by the coupling laser. The observed spectral profile of probe absorption exhibits a very sharp peak emerging inside a narrow EIT dip. Such spectral feature provides more opportunities in manipulating atomic-optical response.
Chang, CY, Hong IH, Chou YC, Wei CM.
2001.
Surface structures by direct transform of electron diffraction patterns, Nov. Journal of Physics-Condensed Matter. 13:10709-10728., Number 47
AbstractWe find that electron diffraction patterns can be directly inverted to provide three-dimensional atomic structures for the system studied. Depending on the scattering process, either holography or a Patterson inversion scheme is used. For diffraction patterns which were generated from a localized emitter source or predominantly by an inelastic-scattering feature like low-energy Kikuchi electrons, holography inversion is needed. The information obtained from Kikuchi electron holography includes the building blocks on the surface and their relative position to the atoms below the surface layer. On the other hand, for diffraction patterns generated predominantly by an inelastic-scattering feature like low-energy electron diffraction (LEED), a Patterson inversion is needed. The information obtained from the Patterson transform of the LEED I(E) curves is the relative positions of surface atoms to the atoms in underlying layers; no intra-layer information can be extracted with this method. High-fidelity and artifact-free three-dimensional atomic structures obtained by inversion of low-energy Kikuchi electron patterns and low-energy electron diffraction curves are presented. The results from the two inversion methods are complementary and can be used to construct or to discriminate the surface atomic structural models. The future of these direct methods by inverting diffraction patterns is discussed.
Luh, DA, Miller T, Paggel JJ, Chou MY, Chiang TC.
2001.
Quantum electronic stability of atomically uniform films, May. Science. 292:1131-1133., Number 5519
AbstractWe have studied the structural stability of thin silver films with thicknesses of N = 1 to 15 monolayers, deposited on an Fe(100) substrate. Photoemission spectroscopy results show that films of N = 1, 2, and 5 monolayer thicknesses are structurally stable for temperatures above 800 kelvin, whereas films of other thicknesses are unstable and bifurcate into a film with N +/- 1 monolayer thicknesses at temperatures around 400 kelvin, The results are in agreement with theoretical predictions that consider the electronic energy of the quantum well associated with a particular film thickness as a significant contribution-to the film stability.
Ahn, H, Wu CL, Gwo S, Wei CM, Chou YC.
2001.
Structure determination of the Si3N4/Si(111)-(8 x 8) surface: A combined study of Kikuchi electron holography, scanning tunneling microscopy, and ab initio calculations, Mar. Physical Review Letters. 86:2818-2821., Number 13
AbstractA comprehensive atomic model for the reconstructed surface of Si3N4 thin layer grown on Si(lll) is presented. Kikuchi electron holography images clearly show the existence of adatoms on the Si3N4(0001)/Si(111)-(8 x 8) surface. Compared with the nb initio calculations, more than 30 symmetry-inequivalent atomic pairs in the outmost layers are successfully identified. Scanning tunneling microscopy (STM) images show diamond-shaped unit cells and nine adatoms in each cell. High-resolution STM images reveal extra features and are in good agreement with the partial charge density distribution obtained from total-energy calculations.
Puzder, A, Chou MY, Hood RQ.
2001.
Exchange and correlation in the Si atom: A quantum Monte Carlo study, Aug. Physical Review A. 64:16., Number 2
AbstractWe have studied the pair-correlation function, the exchange-correlation hole, and the exchange-correlation energy density of the valence electrons in the Si atom using the Coulomb-coupling constant integration technique with the variational quantum Monte Carlo method. These quantities are compared to those derived from various approximate models within the Kohn-Sham density functional theory. We find that the charge density prefactor in the expression for the exchange-correlation hole dominates the errors found in the local spin density approximation (LSDA), that the generalized gradient approximation improves energy calculations by improving the LSDA at long ranges, and that the weighted spin density approximation, which uses the correct charge density prefactor, gives the lowest root mean square error for the exchange-correlation energy density.
Chen, YC, Chen YW, Su JJ, Huang JY, Yu IA.
2001.
Pump-probe spectroscopy of cold Rb-87 atoms in various polarization configurations, Apr. Physical Review A. 63:11., Number 4
AbstractWe investigate systematically pump-probe spectroscopy of cold Rb-87 atoms produced by a magneto-optical trap. The pump-probe spectra are measured without the presence of the trapping beams or any optical molasses. Various polarization configurations of the probe and pump fields result in very different spectra of probe absorption. The observed spectra exhibit a dispersive profile, a dispersionlike profile, a Lorentzian profile, or a dispersive profile plus a Lorentzian profile. The widths of all the spectral profiles are narrower than the natural linewidth of the excited state. Our work clarifies the mechanisms behind these different spectral profiles and provides essential information for the pump-probe spectroscopy of cold atoms.