Abstract Solar-driven CO2 reduction holds great promise for sustainable energy, yet the role of atomic active sites in governing intermediate formation and conversion remains poorly understood. Herein, a synergistic strategy using Ni single atoms (SAs) and surface oxygen vacancies (Ov) is reported to regulate the CO2 reduction pathway on the Bi2WO6 photocatalyst. Combining in-situ techniques and theoretical modeling, the reaction mechanism and the structure-activity relationship is elucidated. In-situ X-ray absorption spectroscopy identifies Bi and Ni as active sites, and in-situ diffuse reflectance infrared Fourier transform spectroscopy demonstrates that adsorption of H2O and CO2 readily forms CO32? species on the Ov-rich catalyst. Optimally balancing Ni SAs and Ov lowers the energy barrier for the formation and dehydration of a key COOH intermediate, leading to favorable CO formation and desorption. Consequently, a superior CO production efficiency of 53.49 µmol g?1 is achieved, surpassing previous reports on Bi2WO6-based catalysts for gas-phase CO2 photoreduction.
n/a