Chang, CM, Chou MY.
2004.
Alternative low-symmetry structure for 13-atom metal clusters, Sep. Physical Review Letters. 93:4., Number 13
AbstractThe atomic geometry, electronic structure, and magnetic moment of 4d transition-metal clusters with 13 atoms are studied by pseudopotential density-functional calculations. We find a new buckled biplanar structure with a C-2v symmetry stabilized by enhanced s-d hybridization. It has a lower energy than the close-packed icosahedral or cuboctahedral structure for elements with more than half-filled d shells. The magnetic moments of this buckled biplanar structure are found to be smaller than those of the icosahedral structure and closer to available experimental results.
Chang, CC, Kuo IC, Lin JJ, Lu YC, Chen CT, Back HT, Lou PJ, Chang TC.
2004.
A novel carbazole derivative, BMVC: a potential antitumor agent and fluorescence marker of cancer cells, Sep. Chem Biodivers. 1:1377-84., Number 9
AbstractWe have investigated a novel compound, 3,6-bis[2-(1-methylpyridinium)vinyl]carbazole diiodide (BMVC), for inhibiting telomerase activity and distinguishing human lung H1299 and oral Ca9-22 cancer cells from lung IMR90 and skin Detroit-551 normal fibroblast cells. The telomeric repeat amplification protocol (TRAP) assay shows that the concentration of BMVC that inhibits 50% of the telomerase activity (IC50) is ca. 0.05 microM. On the other hand, the cell-viability assay indicates that the cytotoxicity was less than 15% to the H1299 and Ca9-22 cancer cells, and almost negligible to the MRC-5 and Detroit-551 normal cells after incubation with 0.5 microM BMVC for 72 h. The low concentration of 0.05 microM of BMVC can inhibit telomerase activity but does not have general toxic effects to normal cells, implying that BMVC is a promising telomerase inhibitor. Moreover, wide-field fluorescence images of 0.1 microM BMVC-treated cells show bright fluorescence spots in the nuclei of the most H1299 and Ca9-22 cancer cells. Interestingly, similar fluorescence spots are hardly observed in the nuclei of the IMR90 and Detroit-551 normal cells, implying that BMVC might be a useful marker to distinguish tumor cells and normal cells.
Peles, A, Alford JA, Ma Z, Yang L, Chou MY.
2004.
First-principles study of NaAlH(4) and Na(3)AlH(6) complex hydrides, Oct. Physical Review B. 70:7., Number 16
AbstractWe present a first-principles investigation of the structural properties, electronic structure, and the chemical stability of the complex hydrides NaAlH(4) and Na(3)AlH(6). The calculations are performed within the density functional framework employing norm conserving pseudopotentials. The structural properties of both hydrides compare well with experimental data. A detailed study of the electronic structure and the charge-density redistribution reveal the features of an ionic covalent bonding between Al and H in the (AlH(4))(-) and (AlH(6))(-3) anionic complexes embedded in the matrix of Na(+) cations. The orbital hybridization and the characteristics of bonding orbitals within the complexes are identified. The calculated reaction energies of these complex hydrides are in good agreement with the experimentally determined values.
Zhao, XY, Wei CM, Yang L, Chou MY.
2004.
Quantum confinement and electronic properties of silicon nanowires, Jun. Physical Review Letters. 92:4., Number 23
AbstractWe investigate the structural, electronic, and optical properties of hydrogen-passivated silicon nanowires along [110] and [111] directions with diameter d up to 4.2 nm from first principles. The size and orientation dependence of the band gap is investigated and the local-density gap is corrected with the GW approximation. Quantum confinement becomes significant for d<2.2 nm, where the dielectric function exhibits strong anisotropy and new low-energy absorption peaks start to appear in the imaginary part of the dielectric function for polarization along the wire axis.
Zhao, XY, Wei CM, Yang L, Chou MY.
2004.
Quantum confinement and electronic properties of silicon nanowires, Jun. Physical Review Letters. 92:4., Number 23
AbstractWe investigate the structural, electronic, and optical properties of hydrogen-passivated silicon nanowires along [110] and [111] directions with diameter d up to 4.2 nm from first principles. The size and orientation dependence of the band gap is investigated and the local-density gap is corrected with the GW approximation. Quantum confinement becomes significant for d<2.2 nm, where the dielectric function exhibits strong anisotropy and new low-energy absorption peaks start to appear in the imaginary part of the dielectric function for polarization along the wire axis.