Publications

User warning: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ')) ORDER BY timestamp DESC' at line 1 query: SELECT timestamp FROM views_content_cache WHERE (()) ORDER BY timestamp DESC in _db_query() (line 169 of /var/www/html/iams/project/includes/database.mysqli.inc).
Export 1109 results:
Sort by: Author Title Type [ Year  (Desc)]
2001
Ahn, H, Wu CL, Gwo S, Wei CM, Chou YC.  2001.  Structure determination of the Si3N4/Si(111)-(8 x 8) surface: A combined study of Kikuchi electron holography, scanning tunneling microscopy, and ab initio calculations, Mar. Physical Review Letters. 86:2818-2821., Number 13 AbstractWebsite

A comprehensive atomic model for the reconstructed surface of Si3N4 thin layer grown on Si(lll) is presented. Kikuchi electron holography images clearly show the existence of adatoms on the Si3N4(0001)/Si(111)-(8 x 8) surface. Compared with the nb initio calculations, more than 30 symmetry-inequivalent atomic pairs in the outmost layers are successfully identified. Scanning tunneling microscopy (STM) images show diamond-shaped unit cells and nine adatoms in each cell. High-resolution STM images reveal extra features and are in good agreement with the partial charge density distribution obtained from total-energy calculations.

Puzder, A, Chou MY, Hood RQ.  2001.  Exchange and correlation in the Si atom: A quantum Monte Carlo study, Aug. Physical Review A. 64:16., Number 2 AbstractWebsite

We have studied the pair-correlation function, the exchange-correlation hole, and the exchange-correlation energy density of the valence electrons in the Si atom using the Coulomb-coupling constant integration technique with the variational quantum Monte Carlo method. These quantities are compared to those derived from various approximate models within the Kohn-Sham density functional theory. We find that the charge density prefactor in the expression for the exchange-correlation hole dominates the errors found in the local spin density approximation (LSDA), that the generalized gradient approximation improves energy calculations by improving the LSDA at long ranges, and that the weighted spin density approximation, which uses the correct charge density prefactor, gives the lowest root mean square error for the exchange-correlation energy density.

Chen, YC, Chen YW, Su JJ, Huang JY, Yu IA.  2001.  Pump-probe spectroscopy of cold Rb-87 atoms in various polarization configurations, Apr. Physical Review A. 63:11., Number 4 AbstractWebsite

We investigate systematically pump-probe spectroscopy of cold Rb-87 atoms produced by a magneto-optical trap. The pump-probe spectra are measured without the presence of the trapping beams or any optical molasses. Various polarization configurations of the probe and pump fields result in very different spectra of probe absorption. The observed spectra exhibit a dispersive profile, a dispersionlike profile, a Lorentzian profile, or a dispersive profile plus a Lorentzian profile. The widths of all the spectral profiles are narrower than the natural linewidth of the excited state. Our work clarifies the mechanisms behind these different spectral profiles and provides essential information for the pump-probe spectroscopy of cold atoms.

Chang, CM, Wei CM, Hafner J.  2001.  Self-diffusion of adatoms on Ni(100) surfaces, Apr. Journal of Physics-Condensed Matter. 13:L321-L328., Number 17 AbstractWebsite

Using ab initio calculations, we fmd that the calculated energy barrier for exchange diffusion of Ni adatoms on Ni(100) surfaces shows a surprisingly large dependence on the size of the surface unit cell. It decreases from 1.39 to 0.78 eV when the cell size changes from (2 x 2) to (6 x 6). This is due to the long-ranged strain field created by the transition state for atomic exchange, which needs a larger cell to relax. The hopping diffusion energy, on the other hand, shows only a very small size effect and remains approximately constant at 0.82-0.86 eV, independently of the cell size. Our results indicate that Ni diffusion on Ni(100) occurs by the exchange mechanism and this is consistent with recent experiments. Previous results obtained using (3 x 3) or (4 x 4) unit cells did not converge sufficiently well to yield correct conclusions.

Holt, M, Zschack P, Hong H, Chou MY, Chiang TC.  2001.  X-ray studies of phonon softening in TiSe2, Apr. Physical Review Letters. 86:3799-3802., Number 17 AbstractWebsite

The charge-density-wave transition in TiSe2, which results in a commensurate (2 X 2 X 2) superlattice at temperatures below similar to 200 K, presumably involves softening of a zone-boundary phonon mode. For the first time, this phonon-softening behavior has been examined over a wide temperature range by synchroton x-ray thermal diffuse scattering.

Lo, HC, Wu JJ, Wen CY, Wong TS, Lin ST, Chen* KH, Chen LC.  2001.  Bonding characterization and nano-indentation study of the amorphous SiCxNy films with and without hydrogen incorporation. Diamond Relat. Mater.. 10:1916-1920.
Chen*, KH, Wong TS, Wang CT, Chen LC, Ma KJ.  2001.  Carbon nanotubes growth by rapid thermal processing. Diamond and Related Materials. 10:1810-1813.
Chen*, LC, Chang SW, Chang CS, Wen CY, Wu J-J, Chen YF, Huang YS, Chen KH.  2001.  Catalyst-free growth of transparent SiCN nanorods. J. Phys. & Chem. of Solids. 62:1567-1576.
Chen*, C-C, Yeh C-C, Chen CH, Yu MY, Liu HL, Wu JJ, Chen KH, Chen LC, Peng JY, Chen YF.  2001.  Catalytic growth and characterization of gallium nitride nanowires. J. Am. Chem. Soc.. 123:2791-2798.
Wu, JJ, Chen KH, Wen CY, Chen* LC, Yu Y-C, Wang C-W, Lin E-K.  2001.  Effect of dilution gas on SiCN films growth using methylamine. Materials Chemistry and Physics. 72:240-244.
Chen, KH, Wen CY, Wu CT, Chen LC, Wang CT, Ma KJ.  2001.  Electron beam induced formation of carbon nanorods. J. Phys. Chem. of Solids. 62:1561-1565.
and H.M. Tsai, Jan CJ, Chiou JW, Pong* WF, Chen KH, et al.  2001.  Electronic and bonding structures of amorphous Si-C-N thin films by X-ray-absorption spectroscopy. Appl. Phys. Lett.. 79:2393-2395.
Yeh, CL, Jan CJ, Chiou JW, Pong* WF, Tsai MH, Chang YK, Chen YY, Lee JF, Tseng PK, Wei SL, Wen CY, Chen LC, Chen KH.  2001.  Electronic structure of the Fe-layer catalyzed carbon nanotubes studies by X-ray-absorption spectroscopy. Appl. Phys. Lett.. 79:3179-3181.
Hong, WK, Chen KH, Chen LC, Tarntair FG, Chen KJ, Lin JB, Cheng* HC.  2001.  Fabrication and characterization of carbon nanotubes triodes. Jpn. J. Appl. Phys.. 40:3468-3473.
Cheng*, HC, Chen KJ, Hong WK, Tarntair FG, Lin JB, Chen KH, Chen LC.  2001.  Fabrication and characterization of low turn-on voltage carbon nanotube field emission triodes. Electrochemical and Solid-State Letters. 4 (8):H15-17.
Chen*, LC, Hong WK, Tarntair FG, Chen KJ, Lin JB, Kichambare PD, Cheng HC, Chen KH.  2001.  Field electron emission from C-based emitters and devices. New Diamond and Frontier Carbon Technology. 11:249-263.
Chen*, LC, Hong WK, Tarntair FG, Chen KJ, Lin JB, Kichambare PD, Cheng HC, Chen KH.  2001.  Field electron emission from carbon-based emitters and devices. New Diamond and Frontier Carbon Tech.. 11:249.
Tarntair, FG, Wu JJ, Chen KH, Wen CY, Chen* LC, Cheng HC.  2001.  Field emission properties of two-layer structured SiCN films. Surface & Coating Tech.. 137:152-157.
and L.C. Chen*, Kichambare PD, Chen KH, Wu JJ, Yang JR, Lin ST.  2001.  Growth of highly transparent nano-crystalline diamond films and a spectroscopic study of the growth. J. Appl. Phys.. 89:753-759.
Su, C, Chang H-C, Wang J-K, Lin J-C.  2001.  Hydrogen on Diamond Surfaces”, an invited chapter for the book entitled “Handbook of Surfaces and Interfaces of Materials. Handbook of Surfaces and Interfaces of Materials. , San Diego: Academic Press
Cheng*, HC, Hong WK, Tarntair FG, Chen KJ, Lin JB, Chen KH, Chen LC.  2001.  Integration of thin film transistor controlled carbon nanotubes for field-emission devices. Electrochemical and Solid-State Letters. 4 (4):H5-H7.
Wang, CT, Ma* KJ, Chen KH, Chen LC, Kichambare PD.  2001.  Ion beam sputtered growth and mechanical properties of SiCN films. J. of Mater. Sci. and Engineering. 33:38.
and P.D. Kichambare, Chen* LC, Wang CT, Ma KJ, Wu CT, Chen KH.  2001.  Laser irradiation of carbon nanotubes. Materials Chemistry and Physics. 72:218-222.
Chen, KJ, Hong WK, Lin JB, Chen LC, Chen KH, Cheng* HC.  2001.  Low turn-on voltage field emission triodes with selective growth of carbon nanotubes. IEEE Electron Device Lett.. 22:516-518.
and W.C. Liu, Wen CY, Chen KH, Lin WC, Tsai* DP.  2001.  Near-field images of the AgOx super-resolution near-field structure. Appl. Phys. Lett.. 78:685-687.