Chang, C-L, Tsai P-Y, Chang Y-P, Lin K-C.
2012.
Interfacial electron transfer from CdSe/ZnS quantum dots to TiO 2 nanoparticles: Size dependence at the single-molecule level. ChemPhysChem. 13:2711-2720., Number 11
AbstractElectron transfer (ET) kinetics of CdSe/ZnS core/shell quantum dots (QDs) on bare coverslips and a TiO 2 nanoparticle-coated thin film has been investigated at the single-molecule level. The QDs prepared have three different diameters of 3.6, 4.6, and 6.4 nm. The trajectories of fluorescence intensity are acquired with respect to the arrival time. The on-time events and subsequent fluorescence lifetimes are shorter with decreasing size. Given the lifetime measurements for QDs on glass and TiO 2, the rate constant of ET from QDs to TiO 2 may be determined to be 1.3×10 7, 6.0×10 6, and 4.7×10 6 s -1 for the increasing sizes of the QDs. The plot of on-time probability density versus arrival time is characterized by power-law statistics in the short time region and a bending tail in the long time region. Marcus's ET model is employed to satisfactorily fit the bending tail behavior and to further calculate the ET rate constants. The theoretical counterparts for the different sizes are 1.4×10 7, 6.4×10 6, and 1.9×10 6 s -1, showing good agreement with the experimental results. Going dotty: Electron transfer kinetics of CdSe/ZnS core/shell quantum dots (QDs) on bare coverslips and on TiO 2 nanoparticle coated thin films have been investigated at the single-molecule level. As the size of the QDs changes, the shift in the valence band (VB) energy is less significant than the shift in the conduction band (CB) energy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fan, H, Tsai P-Y, Lin K-C, Lin C-W, Yan C-Y, Yang S-W, Chang AHH.
2012.
Molecular elimination of Br2 in photodissociation of CH 2BrC(O)Br at 248 nm using cavity ring-down absorption spectroscopy. Journal of Chemical Physics. 137, Number 21
AbstractThe primary elimination channel of bromine molecule in one-photon dissociation of CH2BrC(O)Br at 248 nm is investigated using cavity ring-down absorption spectroscopy. By means of spectral simulation, the ratio of nascent vibrational population in v 0, 1, and 2 levels is evaluated to be 1:(0.5 ± 0.1):(0.2 ± 0.1), corresponding to a Boltzmann vibrational temperature of 581 ± 45 K. The quantum yield of the ground state Br2 elimination reaction is determined to be 0.24 ± 0.08. With the aid of ab initio potential energy calculations, the obtained Br2 fragments are anticipated to dissociate on the electronic ground state, yielding vibrationally hot Br2 products. The temperature-dependence measurements support the proposed pathway via internal conversion. For comparison, the Br2 yields are obtained analogously from CH3CHBrC(O)Br and (CH3)2CBrC(O)Br to be 0.03 and 0.06, respectively. The trend of Br2 yields among the three compounds is consistent with the branching ratio evaluation by Rice-Ramsperger-Kassel-Marcus method. However, the latter result for each molecule is smaller by an order of magnitude than the yield findings. A non-statistical pathway so-called roaming process might be an alternative to the Br2 production, and its contribution might account for the underestimate of the branching ratio calculations. © 2012 American Institute of Physics.
Hsing, CR, Wei CM, Chou MY.
2012.
Quantum Monte Carlo investigations of adsorption energetics on graphene. JOURNAL OF PHYSICS-CONDENSED MATTER. 24:395002.
AbstractWe have performed calculations of adsorption energetics on the graphene surface using the state-of-the-art diffusion quantum Monte Carlo method. Two types of configurations are considered in this work: the adsorption of a single O, F, or H atom on the graphene surface and the H-saturated graphene system (graphane). The adsorption energies are compared with those obtained from density functional theory with various exchange-correlation functionals. The results indicate that the approximate exchange-correlation functionals significantly overestimate the binding of O and F atoms on graphene, although the preferred adsorption sites are consistent. The energy errors are much less for atomic hydrogen adsorbed on the surface. We also find that a single O or H atom on graphene has a higher energy than in the molecular state, while the adsorption of a single F atom is preferred over the gas phase. In addition, the energetics of graphane is reported. The calculated equilibrium lattice constant turns out to be larger than that of graphene, at variance with a recent experimental suggestion.
Kasai, T, Che D-C, Tsaia P-Y, Lina K-C.
2012.
Reaction dynamics with molecular beams and oriented molecular beams: A tool for looking closer to chemical reactions and photodissociations. Journal of the Chinese Chemical Society. 59:567-582., Number 5
AbstractExperimental studies on reaction dynamics by use of molecular beams and oriented molecular beams are reviewed in order for looking closer to chemical reactions as well as photodissociations at the molecular level. We discuss about versatility and usefulness of the electrostatic hexapole sate-selector as a non-destructive selector for molecular structure analysis. Some experimental evidences on novel reaction dynamics in photodissociation and stereodynamics are presented followed by concluding remarks and future perspectives for controlling chemical reactions from the point of view of green chemistry, by manipulating molecular orientation without any catalyst nor by applying any external forces like intense electromagnetic field. © 2012 The Chemical Society Located in Taipei & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tsai, P-Y, Lin K-C.
2012.
Rotational energy transfer of SH(X 2 Π, v′=0, J′=0.5-10.5) by collision with Ar: λ-doublet resolved transition propensity. ChemPhysChem. 13:274-280., Number 1
AbstractThe behavior of λ-doublet resolved rotational energy transfer (RET) by Ar collisions within the SH(X 2Π, v′=0) state is characterized. The matrix elements of terms in the interaction potential responsible for interference effects are calculated to explain the propensity rules for collision-induced transitions within and between spin-orbit manifolds. In this manner, the physical mechanisms responsible for the F 1-F 1, F 2-F 2, and F 1-F 2 transitions may be reasonably identified. As collision energy increases, the propensity for collisional population of the final e or f level is replaced by the e/f-conserving propensity. Such a change in propensity rule can be predicted in terms of energy sudden approximation at high J limit for the pure Hund's case scheme. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chang, TC, Chu JF, Tsai YL, Wang ZF.
2012.
Structure conversion and structure separation of G-quadruplexes investigated by carbazole derivatives. Curr Pharm Des. 18:2002-13., Number 14
AbstractThe challenge of G-quadruplexes is that the G-rich sequences can adopt various G4 structures and possibly interconvert among them, particularly under the change of environmental conditions. Both NMR and circular dichroism (CD) show the spectral conversion of d[AG3(T2AG3)3] (HT22) from Na-form to K-form after Na+/K+ ion exchange. No appreciable change on the induced CD spectra of BMVC molecule and the single molecule tethered particle motion of HT22 in Na+ solution upon K+ titration suggests that the spectral conversion is unlikely due to the structural conversion via fully unfolded intermediate. Although a number of mechanisms were proposed for the spectral change induced by the Na+/K+ ion exchange, determining the precise structures of HT22 in K+ solution may be essential to unravel the mechanism of the structural conversion. Thus, development of a new method for separating different structures is of critical importance for further individual verification. In the second part of this review, we describe a new approach based on "micelle-enhanced ultrafiltration" method for DNA structural separation. The BMVC, a G-quadruplex ligand, is first modified and then forms a large size of emulsion after ultrasonic emulsification, together with its different binding affinities to various DNA structures; for the first time, we are able to separate different DNA structures after membrane filtration. Verification of the possible structural conversion and investigation of structural diversity among various G4 structures are essential for exploring their potential biological roles and for developing new anticancer drugs.
Shishido, R, Kuo J-L, Fujii A.
2012.
Structures and Dissociation Channels of Protonated Mixed Clusters around a Small Magic Number: Infrared Spectroscopy of ((CH3)3N)n–H+–H2O (n = 1–3). The Journal of Physical Chemistry A. 116:6740-6749., Number 25
AbstractThe magic number behavior of ((CH3)3N)n–H+–H2O clusters at n = 3 is investigated by applying infrared spectroscopy to the clusters of n = 1–3. Structures of these clusters are determined in conjunction with density functional theory calculations. Dissociation channels upon infrared excitation are also measured, and their correlation with the cluster structures is examined. It is demonstrated that the magic number cluster has a closed-shell structure, in which the water moiety is surrounded by three (CH3)3N molecules. The ion core (protonated site) of the clusters is found to be (CH3)3NH+ for n = 1–3, but coexistence of an isomer of the H3O+ ion core cannot be ruled out for n = 3. Large rearrangement of the cluster structures of n = 2 and 3 before dissociation, which has been suggested in the mass spectrometric studies, is confirmed on the basis of the structure determination by infrared spectroscopy.