Catalytic effect of near-surface alloying on hydrogen interaction on the aluminum surface

Citation:
Wang, Y, Zhang F, Stumpf R, Lin P, Chou MY.  2011.  Catalytic effect of near-surface alloying on hydrogen interaction on the aluminum surface, May. Physical Review B. 83:5., Number 19

Abstract:

A small amount of catalyst, such as Ti, was found to greatly improve the kinetics of hydrogen reactions in the prototypical hydrogen storage compound sodium alanate (NaAlH(4)). We propose a near-surface alloying mechanism for the rehydrogenation cycle based on a detailed analysis of available experimental data as well as first-principles calculations. The calculated results indicate that the catalyst remains at subsurface sites near the Al surface, reducing the dissociation energy barrier of H(2). The binding between Ti and Al modifies the surface charge distribution, which facilitates hydrogen adsorption and enhances hydrogen mobility on the surface.

Notes:

ISI Document Delivery No.: 761HCTimes Cited: 0Cited Reference Count: 34Cited References: Ivancic TM, 2010, J PHYS CHEM LETT, V1, P2412 Kopczyk M, 2010, SURF SCI, V604, P988 CHEN JC, 2009, CELL, V113, P11027 Stumpf R, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.235413 Gunaydin H, 2008, P NATL ACAD SCI USA, V105, P3673, DOI 10.1073/pnas.0709224105 Borgschulte A, 2008, PHYS CHEM CHEM PHYS, V10, P4045, DOI 10.1039/b803147a JENSEN C, 2008, SOLID STATE HYDROGEN, DOI 10.1533/9781845694944.4.381 Graetz J, 2007, J PHYS CHEM C, V111, P19148, DOI 10.1021/jp076804j Du AJ, 2007, CHEM PHYS LETT, V450, P80, DOI 10.1016/j.cplett.2007.09.090 Lohstroh W, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.184106 Balde CP, 2007, J PHYS CHEM C, V111, P2797, DOI 10.1021/jp064765q Chaudhuri S, 2006, J AM CHEM SOC, V128, P11404, DOI 10.1021/ja060437s Fu QJ, 2006, J PHYS CHEM B, V110, P711, DOI 10.1021/jp055238u Spisak D, 2005, SURF SCI, V582, P69, DOI 10.1016/j.susc.2005.03.005 Chaudhuri S, 2005, J PHYS CHEM B, V109, P6952, DOI 10.1021/jp050558z Lovvik OM, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.054103 Luo WF, 2004, J ALLOY COMPD, V385, P224, DOI 10.1016/j.jallcom.2004.05.004 Graetz J, 2004, APPL PHYS LETT, V85, P500, DOI 10.1063/1.1773614 Bogdanovic B, 2002, MRS BULL, V27, P712, DOI 10.1557/mrs2002.227 Lucadamo G, 2002, J APPL PHYS, V91, P9575, DOI 10.1063/1.1477257 Bogdanovic B, 2000, J ALLOY COMPD, V302, P36, DOI 10.1016/S0925-8388(99)00663-5 Gross KJ, 2000, J ALLOY COMPD, V297, P270, DOI 10.1016/S0925-8388(99)00598-8 Go EP, 1999, SURF SCI, V437, P377, DOI 10.1016/S0039-6028(99)00725-6 Stumpf R, 1997, PHYS REV LETT, V78, P4454, DOI 10.1103/PhysRevLett.78.4454 Bogdanovic B, 1997, J ALLOY COMPD, V253, P1, DOI 10.1016/S0925-8388(96)03049-6 Kresse G, 1996, COMP MATER SCI, V6, P15, DOI 10.1016/0927-0256(96)00008-0 Kim SK, 1996, J PHYS-CONDENS MAT, V8, P25, DOI 10.1088/0953-8984/8/1/005 GUNDERSEN K, 1994, SURF SCI, V304, P131, DOI 10.1016/0039-6028(94)90759-5 PERDEW JP, 1992, PHYS REV B, V46, P6671, DOI 10.1103/PhysRevB.46.6671 HARA M, 1991, SURF SCI, V242, P459, DOI 10.1016/0039-6028(91)90309-G VANDERBILT D, 1990, PHYS REV B, V41, P7892, DOI 10.1103/PhysRevB.41.7892 MAMULA M, 1967, COLLECT CZECH CHEM C, V32, P884 FINHOLT AE, 1955, J INORG NUCL CHEM, V1, P317, DOI 10.1016/0022-1902(55)80038-3 WIBERG E, 1951, Z NATURFORSCH B, V6, P392Wang, Yan Zhang, Feng Stumpf, R. Lin, Pei Chou, M. Y.Department of Energy[DE-FG02-05ER46229]; Office of Science of the US Department of Energy[DE-AC02-05CH11231]This work is supported by the Department of Energy under Grant No. DE-FG02-05ER46229. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231.AMER PHYSICAL SOCCOLLEGE PK

Website