Rotational energy transfer of SH(X 2 Π, v′=0, J′=0.5-10.5) by collision with Ar: λ-doublet resolved transition propensity

Citation:
Tsai, P-Y, Lin K-C.  2012.  Rotational energy transfer of SH(X 2 Π, v′=0, J′=0.5-10.5) by collision with Ar: λ-doublet resolved transition propensity. ChemPhysChem. 13:274-280., Number 1

Abstract:

The behavior of λ-doublet resolved rotational energy transfer (RET) by Ar collisions within the SH(X 2Π, v′=0) state is characterized. The matrix elements of terms in the interaction potential responsible for interference effects are calculated to explain the propensity rules for collision-induced transitions within and between spin-orbit manifolds. In this manner, the physical mechanisms responsible for the F 1-F 1, F 2-F 2, and F 1-F 2 transitions may be reasonably identified. As collision energy increases, the propensity for collisional population of the final e or f level is replaced by the e/f-conserving propensity. Such a change in propensity rule can be predicted in terms of energy sudden approximation at high J limit for the pure Hund's case scheme. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Notes:

cited By 0

Website