Publications in the Year: 2018

Journal Article

Kasai, T, Che D-C, Tsai P-Y, Nakamura M, Muthiah B, Lin K-C.  2018.  Roaming and chaotic behaviors in collisional and photo-initiated molecular-beam reactions: a role of classical vs. quantum nonadiabatic dynamics. Rendiconti Lincei. 29:219-232., Number 2 AbstractWebsite

A new reaction scheme is proposed to account for roaming and chaotic behaviors in collisional and photo-initiated molecular-beam reactions, where nonadiabatic dynamics plays a key role and the collapse of superposition of wave functions is considered to be important in the beginning of the present scheme. Since the feature of molecular orbitals of reagents is crucial in reaction, we showed how to map out the spatial distribution of the relevant HOMO molecular orbitals of CH3Cl in the impact of fast electrons. We identified by experiment that the multiple overlap of nearby molecular orbitals affects even the vibrational motion of adjacent molecule DCl of the transient [ClDCl] chemical species. We also showed dynamical steric effects in the HBr + OH four-atom reaction as a manifestation of the nonadiabatic dynamics in complex systems. The roaming mechanism in the photo-initiated reaction of methyl formate is clarified in detail by experiment as well as the QCT trajectory calculation, where the conical intersection region plays an essential role. We suggest that two types of roaming trajectories coexist, i.e., deterministic and chaotic roaming trajectories based on classical trajectory calculations. To clarify the nonadiabatic dynamics in the roaming mechanism for non-collinear three-dimensional (3D) collisions, a new model of the 3D Polanyi rule is proposed as the extension of the well-established 2D Polanyi rule. In the 3D Polanyi rule, it is expected that the curvature and torsion of Frenet–Serret formulas in three-dimensional space would provide us key concepts in understanding reaction dynamics. © 2018, Accademia Nazionale dei Lincei.

Veerakumar, P, Maiyalagan T, Raj BGS, Guruprasad K, Jiang Z, Lin K-C.  2018.  Paper flower-derived porous carbons with high-capacitance by chemical and physical activation for sustainable applications. Arabian Journal of Chemistry. AbstractWebsite

Porous carbon nanosheets were prepared by the carbonization of paper flower via chemical and physical activation. The structural properties of the as-prepared carbons were characterized using the techniques, such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, N2 sorption isotherms and X-ray photoelectron spectroscopy (XPS), while the related morphological analyses were conducted using scanning/transmission electron microscopy (SEM/TEM). The obtained carbons exhibit a high specific surface area up to 1801 m2 g−1 with a robust porous graphitic carbon layer structure, which provides the merits for potential application in energy storage and dye removal. We carried out potentiostatic and galvanostatic measurements using a three-electrode cell in 1.0 M H2SO4 aqueous electrolyte and achieved a specific capacitance of 118, 109.5, 101.7, 93.6, and 91.2 F g−1 at 1, 2, 4, 8 and 12 A g−1, respectively. The stability at 12 A g−1 was tested to reach 10,000 cycles with capacity retention of around 97.4%. We have demonstrated that the paper flower-derived carbons at activation temperature 800 °C (PFC-800) can be used as a promising electrode material in supercapacitor. PFC-800 can also serve as an efficient sunset yellow dye removal, showing the maximum adsorption capacity for sunset yellow (Q0, 273.6 mg g−1). © 2018 King Saud University

Veerakumar, P, Rajkumar C, Chen S-M, Thirumalraj B, Lin K-C.  2018.  Ultrathin 2D graphitic carbon nitride nanosheets decorated with silver nanoparticles for electrochemical sensing of quercetin. Journal of Electroanalytical Chemistry. 826:207-216. AbstractWebsite

In this work, we describe a facile fabrication of silver nanoparticles decorated on porous ultrathin two dimensional (2D) graphitic carbon nitride nanosheets (AgNPs@g-CN) via chemical approach, which was characterized by various analytical techniques including cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry. As expected, the AgNPs@g-CN modified glassy carbon electrode (AgNPs@g-CN/GCE) exhibited remarkable electrocatalytic activity towards the detection of quercetin (QCR) with a wide linear range from 1.0 × 10−8 to 1.2 × 10−4 mol L−1 and a lower detection limit of 6.0 × 10−9 mol L−1. Besides, the amperometric results revealed that the peak current for QCR could not affect upon the sequential additions of electroactive interfering species such as metal ions (300 μM), biomolecules (100 μM), and other flavonoids (50 μM) indicating the selectivity of the proposed sensor. Moreover, the AgNPs@g-CN modified electrode displayed higher stability and reproducibility towards the detection of QCR. The AgNPs@g-CN/GCE could also be used to detect QCR in green apple (GA) samples with satisfactory recoveries for practical applications. The concepts behind the novel architecture to modify electrodes can be potentially harnessed in other electrochemical sensors and photocatalysis applications. © 2018 Elsevier B.V.

Veerakumar, P, Panneer Muthuselvam I, Thanasekaran P, Lin K-C.  2018.  Low-cost palladium decorated on: M -aminophenol-formaldehyde-derived porous carbon spheres for the enhanced catalytic reduction of organic dyes. Inorganic Chemistry Frontiers. 5:354-363., Number 2 AbstractWebsite

We report the use of palladium nanoparticles (Pd NPs) immobilized on m-aminophenol/formaldehyde resin (APF)-derived porous carbon spheres (Pd@PCS) as heterogeneous catalysts for the reduction of organic dyes. The morphology, structure, surface compositions, and textural properties of PCS and the Pd@PCS catalyst were characterized fully to document the excellent catalytic efficiency of Pd@PCS composites. Pd NPs of mean particle size ca. 12 ± 0.8 nm were highly dispersed on the surface of PCSs, and possessed surface area and pore volume as high as 896.3 m2 g-1 and 0.934 cm3 g-1, respectively. Prepared catalysts were applied to the reduction of various organic dyes; high catalytic activity towards crystal violet, eosin yellow and sunset yellow was observed. More importantly, the catalysts could be recovered readily, and reused many times with good stability. Therefore, the robust material utilized for the treatment of containing organic dyes could be used widely for environmental applications. © 2018 the Partner Organisations.

Paredes-Roibás, D, Balaganesh M, Kasai T, Gavira-Vallejo JM, Lin KC.  2018.  Cavity Ring-Down Absorption Spectroscopy: Optical Characterization of ICl Product in Photodissociation of CH2ICl at 248 nm. Journal of Physical Chemistry A. 122:8344-8353., Number 42 AbstractWebsite

Iodine monochloride (ICl) elimination from one-photon dissociation of CH2ICl at 248 nm is monitored by cavity ring-down absorption spectroscopy (CRDS). The spectrum of ICl is acquired in the transition of B3 0X1 + and is confirmed to result from a primary photodissociation, that is, CH2ICl + h→CH2 + ICl. The vibrational population ratio is determined with the aid of spectral simulation to be 1:(0.36 ± 0.10):(0.11 ± 0.05) for the vibrational levels = 0, 1, and 2 in the ground electronic state, corresponding to a Boltzmann-like vibrational temperature of 535 ± 69 K. The quantum yield of the ICl molecular channel for the reaction is obtained to be 0.052 ± 0.026 using a relative method in which the scheme CH2Br2 →CH2 + Br2 is adopted as the reference reaction. The ICl product contributed by the secondary collisions is minimized such that its quantum yield obtained is not overestimated. With the aid of the CCSD(T)//B3LYP/MIDI! level of theory, the ICl elimination from CH2ICl is evaluated to follow three pathways via either (1) a three-center transition state or (2) two isomerization transition states. However, the three-center concerted mechanism is verified to be unfavorable. © 2018 American Chemical Society.

Dhenadhayalan, N, Sriram MI, Lin K-C.  2018.  Aptamer-based fluorogenic sensing of interferon-gamma probed with ReS2 and TiS2 nanosheets. Sensors and Actuators, B: Chemical. 258:929-936. AbstractWebsite

The fluorogenic aptamer sensing of interferon-gamma (IFN-γ) was scrutinized using two-dimensional (2D) ReS2 and TiS2 nanosheets (NSs) as a platform. The IFN-γ an important cytokine, functions as a bio-indicator to detect infectious diseases such as tuberculosis and human immunodeficiency virus. This 2D NSs based aptamer sensor was implemented to induce the fluorescence off/on resulting from an aptamer, in the absence or presence of a target to be probed. The fluorescence emitting from the aptamer is quenched by interacting with NSs, while the ensuing fluorescence is recovered upon addition of target. Such a fluorescence off/on mechanism was proposed based on the behavior of fluorescence resonance energy transfer (FRET) between the aptamer and NSs. The fluorescence response exhibits linearity as a function of target, and the detection limit of IFN-γ was evaluated to be 57.6 and 82.7 pM for ReS2 and TiS2 NSs, respectively, being comparable to or even better than those methods adopted for probing IFN-γ. The selectivity property was also characterized with various targets, exhibiting a very specific selectivity for IFN-γ. The findings reveal that the aptamer-transition metal dichalcogenides (TMD) NSs will be a great sensing pair to the development of aptamer-based biosensors. Moreover, the biocompatibility and sensing capability of IFN-γ was implemented in human embryonic kidney 293T (HEK) live cells. This is the first report to emerging fluorogenic sensing of IFN-γ aptamer with 2D TMD, showing a promising trend for future design of biosensors. © 2017 Elsevier B.V.

Veerakumar, P, Salamalai K, Thanasekaran P, Lin K-C.  2018.  Simple Preparation of Porous Carbon-Supported Ruthenium: Propitious Catalytic Activity in the Reduction of Ferrocyanate(III) and a Cationic Dye. ACS Omega. 3:12609-12621., Number 10 AbstractWebsite

The present study involves the synthesis, characterization, and catalytic application of ruthenium nanoparticles (Ru NPs) supported on plastic-derived carbons (PDCs) synthesized from plastic wastes (soft drink bottles) as an alternative carbon source. PDCs have been further activated with CO2 and characterized by various analytical techniques. The catalytic activity of Ru@PDC for the reduction of potassium hexacyanoferrate(III), (K3[Fe(CN)6]), and new fuchsin (NF) dye by NaBH4 was performed under mild conditions. The PDCs had spherical morphology with an average size of 0.5 μm, and the Ru NP (5 ± 0.2 nm) loading (4.01 wt %) into the PDC provided high catalytic performance for catalytic reduction of ferrocyanate(III) and NF dye. This catalyst can be recycled more than six times with only a minor loss of its catalytic activity. In addition, the stability and reusability of the Ru@PDC catalyst are also discussed. Copyright © 2018 American Chemical Society.

Lin, K-C, Tsai P-Y, Chao M-H, Nakamura M, Kasai T, Lombardi A, Palazzetti F, Aquilanti V.  2018.  Roaming signature in photodissociation of carbonyl compounds. International Reviews in Physical Chemistry. 37:217-258., Number 2 AbstractWebsite

An alternative to the transition state (TS) pathway, the roaming route, which bypasses the minimum energy path but produces the same molecular products, was recently found in photodissociation dynamics. This account describes signatures of roaming in photodissociation of the carbonyl compounds, specifically methyl formate and aliphatic aldehydes. Methyl formate was promoted to the excited state, followed by internal conversion via a conical intersection. Then, the energetic precursor dissociated to fragments which proceeded along either TS or roaming path. In contrast to the lack of a roaming saddle point found in methyl formate, the structure of the roaming saddle point for each of a series of aliphatic aldehydes comprises two moieties that are weakly bound at a distance. As its size increases, the energy difference between the TS barrier and the roaming saddle point increases and the roaming pathway becomes increasingly dominant. Experimentally, the rotational-level dependence of the roaming route was measured with ion imaging, while the vibrational-state dependence was observed with time-resolved Fourier-transform infrared emission spectroscopy. The roaming signature was verified theoretically by quasi-classical trajectory (QCT) calculations. As an alternative to the QCT method, a multi-center impulsive model was developed to simulate the roaming scalar and vector properties. © 2018 Informa UK Limited, trading as Taylor & Francis Group.

Veerakumar, P, Rajkumar C, Chen S-M, Thirumalraj B, Lin K-C.  2018.  Activated porous carbon supported rhenium composites as electrode materials for electrocatalytic and supercapacitor applications. Electrochimica Acta. 271:433-447. AbstractWebsite

In this study, we developed highly dispersed rhenium nanoparticles decorated on activated carbon (Re@CDACs). The activated carbons were derived from the biomass raw materials cardamom pods (Elettaria cardamomum L) via carbonization followed by activation with ZnCl2 at high temperature. The Re NPs synthesis was achieved by decomposition of [Re2(CO)10] complex via a facile microwave thermal reduction technique. The as-prepared Re@CDACs nanocomposites were characterized by a combination of state-of-the-art techniques. The Re@CDACs nanocomposites so prepared were utilized for electrocatalytic oxidation of sunset yellow (SY) and supercapacitor applications. The Re@CDACs-modified electrodes were found to show extraordinary electrochemical performance for sensitive and selective detection of SY with a wide linear range of 0.05–390 μM and a detection limit and sensitivity of 16 nM (S/N = 3) and 91.53 μA μM−1, respectively, surpassing other modified electrodes. Moreover, these Re@CDACs catalysts were also found to exhibit a higher specific capacitance of 181 F g-1 at a current density of 1.6 A g−1 in 1.0 M H2SO4 electrolyte. The specific capacitance retention of 90% was achieved after 2500 cycles at current density 2.0 A g−1. Therefore, we have demonstrated that the Re@CDACs nanocomposite materials could be used as a promising electrode material in electrochemical oxidation of SY and energy storage applications. © 2018

Dhenadhayalan, N, Lin T-W, Veerakumar P, Lin K-C.  2018.  Metal Nanoparticles Anchored on Rhenium Disulfide Nanosheets as Catalysts for the Reduction of Aromatic Nitro Compounds. ChemNanoMat. AbstractWebsite

Abstract The nanohybrids of noble metal (M=Ag, Au, Pd, Pt, and Ru) nanoparticle-decorated rhenium disulfide nanosheets (ReS2 NSs) were demonstrated as excellent catalysts towards the reduction of aromatic nitro compounds. The M/ReS2 nanohybrids were synthesized by facile hydrothermal method and characterization results proved that each metal nanoparticle was anchored on the ReS2 NSs. These nanohybrids exhibited superior catalytic performance towards the reduction of aromatic nitro compounds including 4-nitrophenol, 2-nitroaniline, and nitrobenzene. Interestingly, the Ru/ReS2 and Pd/ReS2 showed enhanced catalytic reduction compared to Ag/ReS2, Au/ReS2, and Pt/ReS2 and also showed significant catalytic stability due to metal nanoparticles anchored strongly on the surface of ReS2 NSs. Moreover, these M/ReS2 nanohybrids turned out to have much better catalytic performance compared to noble metal nanoparticle-based catalysts. A plausible reduction mechanism was proposed for each nitro compound. It was verified that the metal-nanoparticle-mediated hydrogen transfer was involved in the reduction of nitro compounds to amines. This report demonstrates the catalytic activities for metal nanoparticle-decorated ReS2 nanohybrids, which can serve as a paradigm to open up a future trend in the design of transition metal dichalcogenides nanohybrids as superior catalysts.