Enhanced optical conductivity induced by surface states in ABC-stacked few-layer graphene

Citation:
Yan, JA, Ruan WY, Chou MY.  2011.  Enhanced optical conductivity induced by surface states in ABC-stacked few-layer graphene, Jun. Physical Review B. 83:6., Number 24

Abstract:

The surface states of ABC-stacked few-layer graphene ( FLG) are studied based on density-functional theory. These states form flat bands near the Fermi level, with the k-space range increasing with the layer number. Based on a tight-binding model, the characteristics of these surface states and their evolution with respect to the number of layers are examined. The infrared optical conductivity is then calculated within the single-particle excitation picture. We show that the surface states introduce unique peaks at around 0.3 eV in the optical conductivity spectra of ABC-stacked FLG when the polarization is parallel to the sheets, in good agreement with recent experimental measurement. Furthermore, as the layer number increases, the absorption amplitude is greatly enhanced and the peak position redshifts, which provides a feasible way to identify the number of layers for ABC-stacked FLG using optical conductivity measurements.

Notes:

ISI Document Delivery No.: 781LZTimes Cited: 1Cited Reference Count: 41Cited References: Lui CH, 2011, NANO LETT, V11, P164, DOI 10.1021/nl1032827 Zhang F, 2010, PHYS REV B, V82 Mak KF, 2010, PHYS REV LETT, V104 Norimatsu W, 2010, PHYS REV B, V81 Yang L, 2010, PHYS REV B, V81 Koshino M, 2010, PHYS REV B, V81 Yang L, 2009, PHYS REV LETT, V103 Koshino M, 2009, PHYS REV B, V80 Min H, 2009, PHYS REV LETT, V103 Mak KF, 2009, PHYS REV LETT, V102 Zhang YB, 2009, NATURE, V459, P820 Li ZQ, 2009, PHYS REV LETT, V102 Castro Neto AH, 2009, REV MOD PHYS, V81, P109 Stauber T, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.085432 Li ZQ, 2008, NAT PHYS, V4, P532, DOI 10.1038/nphys989 Wang F, 2008, SCIENCE, V320, P206, DOI 10.1126/science.1152793 Chen JH, 2008, NAT NANOTECHNOL, V3, P206, DOI 10.1038/nnano.2008.58 Oostinga JB, 2008, NAT MATER, V7, P151, DOI 10.1038/nmat2082 MIN H, 2008, SUPPL PROG THEOR PHY, V176, P227 Casiraghi C, 2007, NANO LETT, V7, P2711, DOI 10.1021/nl071168m Jiang Z, 2007, PHYS REV LETT, V98 Yan J, 2007, PHYS REV LETT, V98 Aoki M, 2007, SOLID STATE COMMUN, V142, P123, DOI 10.1016/j.ssc.2007.02.013 Manes JL, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.155424 Geim AK, 2007, NAT MATER, V6, P183, DOI 10.1038/nmat1849 Lu CL, 2006, APPL PHYS LETT, V89, DOI 10.1063/1.2396898 Ohta T, 2006, SCIENCE, V313, P951, DOI 10.1126/science.1130681 Latil S, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.036803 Guinea F, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.245426 Lu CL, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144427 McCann E, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.086805 Gajdos M, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.045112 Novoselov KS, 2005, NATURE, V438, P197, DOI 10.1038/nature04233 Zhang YB, 2005, NATURE, V438, P201, DOI 10.1038/nature04235 Berger C, 2004, J PHYS CHEM B, V108, P19912, DOI 10.1021/jp040650f Novoselov KS, 2004, SCIENCE, V306, P666, DOI 10.1126/science.1102896 KRESSE G, 1993, PHYS REV B, V47, P558, DOI 10.1103/PhysRevB.47.558 TSUJI M, 1960, REV MOD PHYS, V32, P425, DOI 10.1103/RevModPhys.32.425 Lipson H, 1942, PROC R SOC LON SER-A, V181, P0101, DOI 10.1098/rspa.1942.0063 WANG ZF, ARXIVCONDMAT0703422V YAN JA, UNPUBYan, Jia-An Ruan, W. Y. Chou, M. Y.US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering[DEFG02-97ER45632]J.-A.Y. thanks Dr. X. Wang for useful discussions. We acknowledge the support by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DEFG02-97ER45632. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC).AMER PHYSICAL SOCCOLLEGE PK

Website