Lattice Vibrational Modes and their Frequency Shifts in Semiconductor Nanowires

Citation:
Yang, L, Chou MY.  2011.  Lattice Vibrational Modes and their Frequency Shifts in Semiconductor Nanowires, Jul. Nano Letters. 11:2618-2621., Number 7

Abstract:

We have performed first-principles calculations to study the lattice vibrational modes and their Raman activities in silicon nanowires (SiNWs). Two types of characteristic vibrational modes are examined: high-frequency optical modes and low-frequency confined modes. Their frequencies have opposite size dependence with a red shift for the optical modes and a blue shift for the confined modes as the diameter of SiNWs decreases. In addition, our calculations show that these vibrational modes can be detected by Raman scattering measurements, providing an efficient way to estimate the size of SiNWs.

Notes:

ISI Document Delivery No.: 793UMTimes Cited: 0Cited Reference Count: 37Cited References: Khoo KH, 2010, PHYS REV LETT, V105 Bourgeois E, 2010, PHYS REV B, V81 Murphy-Armando F, 2010, NANO LETT, V10, P869 Rurali R, 2010, REV MOD PHYS, V82, P427 Chen X, 2009, J PHYS CHEM C, V113, P14001 Lange H, 2008, NANO LETT, V8, P4614, DOI 10.1021/nl803134t Vo TTM, 2008, NANO LETT, V8, P1111, DOI 10.1021/nl073231d Boukai AI, 2008, NATURE, V451, P168, DOI 10.1038/nature06458 Hochbaum AI, 2008, NATURE, V451, P163, DOI 10.1038/nature06381 Zhang Y, 2007, J APPL PHYS, V102, DOI 10.1063/1.2811862 Wang J, 2007, APPL PHYS LETT, V90, DOI 10.1063/1.2748342 Nobile C, 2007, NANO LETT, V7, P476, DOI 10.1021/nl062818+ Adu KW, 2005, NANO LETT, V5, P409, DOI 10.1021/nl0486259 Thonhauser T, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.081307 BARONI S, 2005, QUANTUM ESPRESSO OPE Thonhauser T, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.075213 Li DY, 2003, APPL PHYS LETT, V83, P2934, DOI 10.1063/1.1616981 Liu HL, 2001, CHEM PHYS LETT, V345, P245, DOI 10.1016/S0009-2614(01)00858-2 Cui Y, 2001, SCIENCE, V291, P851, DOI 10.1126/science.291.5505.851 Duan XF, 2001, NATURE, V409, P66, DOI 10.1038/35051047 Duesberg GS, 2000, PHYS REV LETT, V85, P5436, DOI 10.1103/PhysRevLett.85.5436 Shi WS, 2000, J AM CERAM SOC, V83, P3228 Jorio A, 2000, PHYS REV LETT, V85, P2617, DOI 10.1103/PhysRevLett.85.2617 Wang RP, 2000, PHYS REV B, V61, P16827, DOI 10.1103/PhysRevB.61.16827 Holmes JD, 2000, SCIENCE, V287, P1471, DOI 10.1126/science.287.5457.1471 Morales AM, 1998, SCIENCE, V279, P208, DOI 10.1126/science.279.5348.208 KRTI J, 1998, PHYS REV B, V58, P8869 Hong S, 1997, PHYS REV B, V55, P9975, DOI 10.1103/PhysRevB.55.9975 GONZE X, 1992, PHYS REV LETT, V68, P3603, DOI 10.1103/PhysRevLett.68.3603 GIANNOZZI P, 1991, PHYS REV B, V43, P7231, DOI 10.1103/PhysRevB.43.7231 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 BARONI S, 1987, PHYS REV LETT, V58, P1861, DOI 10.1103/PhysRevLett.58.1861 BARONI S, 1986, PHYS REV B, V33, P5969, DOI 10.1103/PhysRevB.33.5969 BRUESCH P, 1986, PHONONS THEORY EXPT, V2 CARDONA M, 1982, LIGHT SCATTERING SOL, V2 RICHTER H, 1981, SOLID STATE COMMUN, V39, P625, DOI 10.1016/0038-1098(81)90337-9 COHEN ML, 1975, PHYS REV B, V12, P5575, DOI 10.1103/PhysRevB.12.5575Yang, Li Chou, M. Y.U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering[DEFG02-97ER45632]This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DEFG02-97ER45632. Computational resources are provided by the National Energy Research Scientific Computing Center (NERSC).AMER CHEMICAL SOCWASHINGTON

Website