Fang, N, Wang Q, Zheng A, Zhang Z, Fan J, Liu SB, Amoureux JP, Deng* F.
2013.
Understanding the High Photocatalytic Activity of (B, A)-codoped TiO2 under Solar-Light Irradiation with XPS, Solid-State NMR and DFT Calculations. Journal of the American. 135:1607-1616.
Chou, JP, Hsing CR, Wei CM, Cheng C, Chang CM.
2013.
Ab-initio Random Structure Search for 13-atom clusters of fcc elements. JOURNAL OF PHYSICS-CONDENSED MATTER. 25:125305.
AbstractThe 13-atom metal clusters of fcc elements (Al, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) were studied by density functional theory calculations. The global minima were searched for by the ab initio random structure searching method. In addition to some new lowest-energy structures for Pd13 and Au13, we found that the effective coordination numbers of the lowest-energy clusters would increase with the ratio of the dimer-to-bulk bond length. This correlation, together with the electronic structures of the lowest-energy clusters, divides the 13-atom clusters of these fcc elements into two groups (except for Au13, which prefers a two-dimensional structure due to the relativistic effect). Compact-like clusters that are composed exclusively of triangular motifs are preferred for elements without d-electrons (Al) or with (nearly) filled d-band electrons (Ni, Pd, Cu, Ag). Non-compact clusters composed mainly of square motifs connected by some triangular motifs (Rh, Ir, Pt) are favored for elements with unfilled d-band electrons.
Palazzetti, F, Tsai P-Y, Lombardi A, Nakamura M, Che D-C, Kasai T, Lin K-C, Aquilanti V.
2013.
Aligned molecules: Chirality discrimination in photodissociation and in molecular dynamics. Rendiconti Lincei. 24:299-308., Number 3
AbstractEmergence of biochemical homochirality is an intriguing topic, and none of the proposed scenarios has encountered a unanimous consensus. Candidates for naturally occurring processes, which may originate chiral selection, involve interaction of matter with light and molecular collisions. We performed and report here: (1) simulations of photodissociation of an oriented chiral molecule by linearly polarized (achiral) light observing that the angular distribution of the photofragments is characteristic of each enantiomer and both differ from the racemic mixture; and (2) molecular dynamics simulations (elastic collisions of oriented hydrogen peroxide, one of the most simple chiral molecules, with Ne atom) demonstrating that the scattering and the recoil angles are specific of the enantiomeric form. The efficacy of non-chiral light (in the case of photodissociation) and of non-chiral projectile (in the case of collisions) is due to the molecular orientation, as an essential requirement to observe chiral effects. The results of the simulations, that we report in this article, provide the background for the perspective realization of experiments which go beyond the well-documented ones involving interaction of circularly polarized laser (chiral light) with the matter, specifically by making use of non-chiral, i.e. linearly polarized or unpolarized light sources, and also by obtaining chiral effects with no use at all of light, but simply inducing them by molecular collisions. The case of vortices is discussed in a companion paper. © 2013 Accademia Nazionale dei Lincei.
Nakamura, M, Che D-C, Tsai P-Y, Lin K-C, Kasai T.
2013.
Alignment selection of the metastable CO(a 3π1) molecule and the steric effect in the aligned CO(a 3π1) + NO collision. Journal of Physical Chemistry A. 117:8157-8162., Number 34
AbstractThe aligned metastable CO(a 3π1) molecular beam was generated by an electronic excitation through the Cameron band (CO a 3Π1 ← X 1Σ+) transition. Beam characterization of the aligned molecular beam of CO(a 3Π1) was carried out by (1 + 1) REMPI detection via the b 3Σ+ state. The REMPI signals showed the clear dependence on the polarization of the pump laser, and the experimental result was well reproduced by the theoretical simulation. This agreement confirms that aligned metastable CO(a 3Π1) can be generated and controlled by rotating polarization of the pump laser. By using this technique, a single quantum state of CO(a 3Π1) can be selected as a metastable molecular beam. The steric effect in the energy-transfer collision of CO(a 3Π1) with NO forming the excited NO was carried out with this aligned CO(a 3Π1) molecular beam. We find that the sideways orientation of CO(a 3Π1) is more favorable in the formation of the excited NO(A 2Σ+, B 2Π) than that for the axial collisions. The obtained steric effect was discussed with the aid of the spatial distribution of CO(a 3Π1) molecular orbitals, and we find that specific rotational motion of CO(a 3Π1) in each state may not be a dominant factor in this energy-transfer collision. © 2013 American Chemical Society.
Hsu, M-Y, Tsai P-Y, Wei Z-R, Chao M-H, Zhang B, Kasai T, Lin K-C.
2013.
Competitive bond rupture in the photodissociation of bromoacetyl chloride and 2- and 3-bromopropionyl chloride: Adiabatic versus diabatic dissociation. ChemPhysChem. 14:936-945., Number 5
AbstractCompetitive bond dissociation mechanisms for bromoacetyl chloride and 2- and 3-bromopropionyl chloride following the 1[n(O) →π*(Cï£O)] transition at 234-235 nm are investigated. Branching ratios for C-Br/C-Cl bond fission are found by using the (2+1) resonance-enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the Cï£O chromophore. C-Cl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(Cï£O) and np(Cl)σ*(C-Cl) bands. In contrast, C-Br bond fission is subject to much weaker coupling between n(O)π*(Cï£O) and np(Br)σ*(C-Br). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2-bromopropionyl chloride, which leads to excited-state products. For 3-bromopropionyl chloride, the available energy is not high enough to reach the excited-state products such that C-Br bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted. Busted open: Insight into the mechanisms causing C-Cl and C-Br bond fission of bromoacetyl chloride and 2- and 3-bromopropionyl chloride by following the 1[n(O) →π*(Cï£O)] transition is obtained. The figure shows the center-of-mass translational energy distributions of ground-state Br formation through a diabatic pathway for the dissociation of 2-bromopropionyl chloride. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chao, M-S, Tornero J, Lin KC, Stolte S, González Ureña A.
2013.
Decoherence cross-section in NO + Ar collisions: Experimental results and a simple model. Journal of Physical Chemistry A. 117:8119-8125., Number 34
AbstractQuantum decoherence can be viewed as the mechanism responsible for the quantum-to-classical transition as the initially prepared quantum state interacts with its environment in an irreversible manner. One of the most common mechanisms responsible for the macroscopically observed decoherence involves collisions of an atom or molecule, initially prepared in a coherent superposition of states, with gas particles. In this work, a coherent superposition of quantum internal states of NO molecules is prepared by the interaction between the molecule with both a static and a radiofrequency electric field. Subsequently, NO + Ar collision decoherence experiments are investigated by measuring the loss of coherence as a function of the number of collisions. Data analysis using a model based on the interaction potential of the collisional partners allowed to unravel the molecular mechanism responsible for the loss of coherence in the prepared NO quantum superposition of internal states. The relevance of the present work relies on several aspects. On the one hand, the use of radio-waves introduces a new way for the production of coherent beams. On the other hand, the employed methodology could be useful in investigating the Stereodynamics of chemical reactions with coherent reagents. © 2013 American Chemical Society.
Chen, Y-W, Kuo J-L.
2013.
Density Functional Study of the First Wetting Layer on the GaN (0001) Surface. The Journal of Physical Chemistry C. 117:8774-8783., Number 17
AbstractThe first wetting layer on the GaN (0001) surface has been investigated at the level of density functional theory. Many water adsorption models have been analyzed and it is observed that the number of water molecules that can be dissociated is limited to 0.375 ML of adsorption sites; further water dissociation will cost energy penalty. The coverage of hydroxyl groups on surface could be up to 0.75 ML instead. It is also observed that the additional charge on the surface will totally transfer to water adsorbates when the water dissociation number is 0.375 ML. Meanwhile, the surface states will disappear when all the adsorption sites are occupied by dissociated or intact water. All of these phenomena can be attributed to the electron counting rule of III–V semiconductor growth theory. We suggest that the electron counting rule could be generally applied to the water adsorption on polar III–V and II–VI semiconductor surfaces.
Gruznev, DV, Matetskiy AV, Bondarenko LV, Zotov AV, Saranin AA, Chou JP, Wei CM, Wang YL.
2013.
Dim C60 fullerenes on Si(111)-√3×√3-Ag surface. Surface Science. 612:31-36.
AbstractScanning tunneling microscopy (STM) observations of the close-packed C60 fullerene arrays on Si(111)
R3xR3-Ag surface have revealed the presence of dim C60 molecules which constitute 9–12% of all fullerenes. The dim C60 fullerenes reside 1.6 A lower than the bright (“normal”) C60.While the brightC60 are in continuous rotation, the dim C60 are fixed in one of the single orientations, indicating a more tight bonding to the surface. At room temperature (RT), the dynamic switching from bright to dim C60 and vice versa has been detected. Switching slows down with decreasing temperature and becomes completely frozen at 110 K, which implies that the switching is a thermally driven process. RT deposition of 0.1 monolayer of Ag onto C60 array eliminates completely the dim C60 molecules. Experimental results can be understood if one assumes that formation of the dim C60 is associated with disintegration of Ag trimer on Si(111)R3xR3- Ag surface under a given C60 fullerene.
Hamashima, T, Li Y-C, Wu MCH, Mizuse K, Kobayashi T, Fujii A, Kuo J-L.
2013.
Folding of the Hydrogen Bond Network of H+(CH3OH)7 with Rare Gas Tagging. The Journal of Physical Chemistry A. 117:101-107., Number 1
AbstractA number of isomer structures can be formed in hydrogen-bonded clusters, reflecting the essential variety of structural motifs of hydrogen bond networks. Control of isomer distribution of a cluster is important not only in practical use for isomer-specific spectroscopy but also in understanding of isomerization processes of hydrogen bond networks. Protonated methanol clusters have relatively simple networks and they are model systems suitable to investigate isomer distribution changes. In this paper, isomer distribution of H+(CH3OH)7 is studied by size-selective infrared spectroscopy in the OH and CH stretching vibrational region and density functional theory calculations. While the clusters produced by a supersonic jet expansion combined with electron ionization were predominantly isomers having open hydrogen bond networks such as a linear chain, the Ar or Ne attachment (so-called rare gas tagging) entirely switches the isomer structures to compactly folded ones, which are composed only of closed multiple rings. The origin of the isomer switching is discussed in terms of thermal effects and specific isomer preference.
Chang, Y-P, Tsai P-Y, Lee H-L, Lin K-C.
2013.
Interfacial electron transfer from CdSe/ZnS quantum dots to TiO2 nanoparticles: Linker dependence at single molecule level. Electroanalysis. 25:1064-1073., Number 4
AbstractWe utilize single molecule spectroscopy combined with time-correlated single-photon counting to probe electron transfer (ET) kinetics from CdSe/ZnS (core/shell) quantum dots (QDs) to TiO2 through various lengths of linker molecules. The QD-linker-TiO2 complexes with varied linker length, linker structure, and QD size are fabricated by a surface-based stepwise method to show control of the rate and of the magnitude of fluctuations of photo-induced ET at the single molecule level. The ET rate constants are determined to be 2.8×107, 1.9×107, and 3.5×106s-1 for the chain length of 1.5, 6.2 and 13.8Å, respectively. The electronic coupling strengths between QDs and TiO2 are further calculated to be 3.68, 3.60, and 1.59cm-1 for the three different chain lengths by using the Marcus ET model. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tsai, P-Y, Lin K-C.
2013.
Note: Photodissociation of CH3COCN at 308 nm by time-resolved Fourier-transform infrared emission spectroscopy: Is CO a primary or secondary product? Journal of Chemical Physics. 138, Number 24
AbstractThis Note aims to clarify the source of CO in photodissociation of acetyl cyanide (CH3COCN) at 308 nm. From the theoretical aspects, a new pathway via isomerization transition state (TS) at 391 ± 8 kJ/mol is found leading to the CO + CH3NC products. An amount of 60% reactant molecules at 300 K is estimated to successfully surpass the average TS barrier lying above the excitation energy by 3.5 kJ/mol. Further, a prior distribution method is conducted to characterize the vibrational energy distribution of CO on a statistical basis. The pathway to CH3NC + CO yields a vibrational branching ratio (v = 0:v = 1:v = 2:v = 3∼0.63:0.25:0.093:0.032) in excellent agreement with the observation (0.62:0.25:0.09:0.05). © 2013 AIP Publishing LLC.
Fan, X, Zheng WT, Kuo J-L.
2013.
Oxygen reduction reaction on active sites of heteroatom-doped graphene. RSC Adv.. 3:5498-5505.: The Royal Society of Chemistry
AbstractWith first-principle DFT calculations{,} the catalytic activity of heteroatom-doped carbon nanostructures in oxygen reduction reaction is investigated by exploring the active site of B-doped{,} N-doped and (B{,} N)-codoped and analyzing the kinetic pathways of oxygen reduction with the participation of protons. It is found that the heteroatom-doped graphene can become the effective catalysis materials for ORR with four-electron pathway. Especially{,} the formation of epoxide groups may be important for the four-electron processes on B-doped and (B{,} N)-codoped graphene. By the analysis of charge redistribution{,} the formation of active catalytic sites is attributed to the localized positive charge and electronic dipole induced by the dopant.
Hu, E-L, Tsai P-Y, Fan H, Lin K-C.
2013.
Photodissociation of gaseous CH3COSH at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: Observation of three dissociation channels. Journal of Chemical Physics. 138, Number 1
AbstractUpon one-photon excitation at 248 nm, gaseous CH3C(O)SH is dissociated following three pathways with the products of (1) OCS + CH 4, (2) CH3SH + CO, and (3) CH2CO + H 2S that are detected using time-resolved Fourier-transform infrared emission spectroscopy. The excited state 1(nO, π *CO) has a radiative lifetime of 249 ± 11 ns long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of collision-induced internal conversion is estimated to be 1.1 × 10-10 cm3 molecule -1 s-1. Among the primary dissociation products, a fraction of the CH2CO moiety may undergo further decomposition to CH2 + CO, of which CH2 is confirmed by reaction with O2 producing CO2, CO, OH, and H2CO. Such a secondary decomposition was not observed previously in the Ar matrix-isolated experiments. The high-resolution spectra of CO are analyzed to determine the ro-vibrational energy deposition of 8.7 ± 0.7 kcal/mol, while the remaining primary products with smaller rotational constants are recognized but cannot be spectrally resolved. The CO fragment detected is mainly ascribed to the primary production. A prior distribution method is applied to predict the vibrational distribution of CO that is consistent with the experimental findings. © 2013 American Institute of Physics.
Kobayashi, T, Shishido R, Mizuse K, Fujii A, Kuo J-L.
2013.
Structures of hydrogen bond networks formed by a few tens of methanol molecules in the gas phase: size-selective infrared spectroscopy of neutral and protonated methanol clusters. Phys. Chem. Chem. Phys.. 15:9523-9530.: The Royal Society of Chemistry
AbstractIn this work{,} we report infrared spectra of large neutral and protonated methanol clusters{,} (MeOH)n and H+(MeOH)n{,} in the CH and OH stretching vibrational region in the size range of n = 10-50. The infrared-ultraviolet double resonance scheme combined with mass spectrometry was employed to achieve moderate size selection of the neutral clusters with the addition of a phenol molecule as a chromophore. Infrared dissociation spectroscopy was performed on the protonated methanol clusters by using a tandem quadrupole mass spectrometer to enable the precise size selection of the clusters. While the neutral clusters showed essentially the same spectra in all the observed size range{,} the protonated clusters showed remarkable narrowing of the H-bonded OH stretch band with increasing n. In n [greater-than-or-equal] [similar]30{,} the spectra of the neutral and protonated clusters become almost identical. These spectral features demonstrate that hydrogen bond networks of methanol prefer simple cyclic structures (or {"}bicyclic{"} structures in protonated methanol) and branching of the hydrogen bond networks (side-chain formation) is almost negligible. Implications of the spectra of the clusters are also discussed by comparison with spectra of bulk phases.