Publications

Export 60 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
Jen, HH, Chang MS, Chen YC.  2016.  Cooperative single-photon subradiant states. Physical Review A. 94(1):013803.
Lee, C-Y, Wu B-H, Wang G, Chen Y-F, Chen Y-C, Yu IA.  2016.  High conversion efficiency in resonant four-wave mixing processes. Optics Express. 24 :1008-1016.
Chen, Y-H, Chen Y-C, Yu IA.  2016.  High-Efficiency Coherent Light Storage for the Application of Quantum Memory. AAPPS Bulletin. 26(5)
Liu, Z-Y, Chen Y-H, Chen Y-C, Lo H-Y, Tsai P-J, Yu IA, Chen Y-C, Chen Y-F.  2016.  Large Cross-Phase Modulations at the Few-Photon Level. Phys. Rev. Lett. 117(203601)
Jen, HH, Chen YC.  2016.  Spectral shaping of cascade emissions from multiplexed cold atomic ensembles. Physical Review A. 93 :013811.
2014
Hsiao, Y-F, Tsai P-J, Lin C-C, Chen Y-F, Yu IA, Chen Y-C.  2014.  Coherence properties of amplified slow light by four-wave mixing. Optics Letters. 39(12):3394-3397. Abstract

We present an experimental study of the coherence properties of amplified slow light by four-wave mixing (FWM) in a three-level electromagnetically induced transparency (EIT) system driven by one additional pump field. High energy gain (up to 19) is obtained with a weak pump field (a few mW∕cm2) using optically dense cold atomic gases. A large fraction of the amplified light is found to be phase incoherent to the input signal field. The dependence of the incoherent fraction on pump field intensity and detuning and the control field intensity is systematically studied. With the classical input pulses, our results support a recent theoretical study by Lauk et al. [Phys. Rev. A 88, 013823 (2013)], showing that the noise resulting from the atomic dipole fluctuations associated with spontaneous decay is significant in the high gain regime. This effect has to be taken into consideration in EIT-based applications in the presence of FWM.

Hsiao, Y-F, Chen H-S, Tsai P-J, Chen Y-C.  2014.  Cold atomic media with ultrahigh optical depths. Phys. Rev. A. 90:054401. Abstract

We present an experimental study to achieve ultrahigh optical depths for cold atomic media with a two dimensional magneto-optical trap (MOT) of cesium. By combining large atom number, a temporally dark and compressed MOT, and Zeeman-state optical pumping, we achieve an optical depth of up to 1306 for the open transition of the cesium D1 line. Our work demonstrates that it is feasible to push the optical depth up to the 1000 level with a convenient MOT setup. This development paves the way to many important proposals in quantum optics and many-body physics.

Chen, Y-H, Lee M-J, Hung W, Chen Y-C, Chen Y-F, Yu IA.  2014.  Interaction between two stopped light pulses. AIP Conference Proceedings . 1588:17-26. Abstract

The efficiency of a nonlinear optical process is proportional to the interaction time. We report a scheme of all-optical switching based on two motionless light pulses via the effect of electromagnetically induced transparency. One pulse was stopped as the stationary light pulse (SLP) and the other was stopped as stored light. The time of their interaction via the medium can be prolonged and, hence, the optical nonlinearity is greatly enhanced. Using a large optical density (OD) of 190, we achieved a very long interaction time of 6.9 μs. This can be analogous to the scheme of trapping light pulses by an optical cavity with a Q factor of 8×109. With the approach of using moving light pulses in the best situation, a switch can only be activated at 2 photons per atomic absorption cross section. With the approach of employing a SLP and a stored light pulse, a switch at only 0.56 photons was achieved and the efficiency is significantly improved. Moreover, the simulation results are in good agreement with the experimental data and show that the efficiency can be further improved by increasing the OD of the medium. Our work advances the technology in quantum information manipulation utilizing photons.

Chiu, C-K, Chen Y-H, Chen Y-C, Yu IA, Chen Y-C, Chen Y-F.  2014.  Low-light-level four-wave mixing by quantum interference. Phys. Rev. A. 89:5. Abstract

We observed electromagnetically induced transparency-based four-wave mixing (FWM) in the pulsed regime at low light levels. The FWM conversion efficiency of 3.8(9)% was observed in a four-level system of cold 87Rb atoms using a driving laser pulse with a peak intensity of ≈80 μW/cm2, corresponding to an energy of ≈60 photons per atomic cross section. Comparison between the experimental data and the theoretical predictions proposed by Harris and Hau [Phys. Rev. Lett. 82, 4611 (1999)] showed good agreement. Additionally, a high conversion efficiency of 46(2)% was demonstrated when applying this scheme using a driving laser intensity of ≈1.8 mW/cm2. According to our theoretical predictions, this FWM scheme can achieve a conversion efficiency of nearly 100% when using a dense medium with an optical depth of 500.

2013
Chen, YH, Lee MJ, Wang IC, Du SW, Chen YF, Chen YC, Yu IA.  2013.  Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay, Feb. Physical Review Letters. 110:5., Number 8 AbstractWebsite

A high-storage efficiency and long-lived quantum memory for photons is an essential component in long-distance quantum communication and optical quantum computation. Here, we report a 78% storage efficiency of light pulses in a cold atomic medium based on the effect of electromagnetically induced transparency. At 50% storage efficiency, we obtain a fractional delay of 74, which is the best up-to-date record. The classical fidelity of the recalled pulse is better than 90% and nearly independent of the storage time, as confirmed by the direct measurement of phase evolution of the output light pulse with a beat-note interferometer. Such excellent phase coherence between the stored and recalled light pulses suggests that the current result may be readily applied to single photon wave packets. Our work significantly advances the technology of electromagnetically induced transparency-based optical memory and may find practical applications in long-distance quantum communication and optical quantum computation. DOI: 10.1103/PhysRevLett.110.083601

2012
Huang, SJ, Hsu YT, Lee H, Chen YC, Volosniev AG, Zinner NT, Wang DW.  2012.  Field-induced long-lived supermolecules, May 7. Physical Review A. 85 AbstractWebsite

We demonstrate that the long-lived bound states (supermolecules) can exist in the dilute limit when we tune the shape of the effective potential between polar molecules by an external microwave field. Binding energies, average sizes, and phase diagrams for both s-orbital (bosons) and p-orbital (fermions) dimers are studied, together with bosonic trimer states. We explicitly show that the nonadiabatic transition rate can be easily tuned small for such ground-state supermolecules, so that the system can be stable from collapse even near the associated potential resonance. Our results, therefore, suggest a feasible cold molecule system to investigate novel few-body and many-body physics (for example, the p-wave BCS-Bose-Einstein-condensate crossover for fermions and the paired condensate for bosons) that cannot be easily accessed in single species atomic gases.

Lin, C-C, Wu M-C, Shiau B-W, Chen Y-H, Yu IA, Chen Y-F, Chen Y-C.  2012.  Enhanced all-optical switching with double slow light pulses, Dec 28. Physical Review A. 86 AbstractWebsite
n/a
Chen, Y-H, Lee M-J, Hung W, Chen Y-C, Chen Y-F, Yu IA.  2012.  Demonstration of the Interaction between Two Stopped Light Pulses. Physical Review Letters. 108:173603. AbstractWebsite
n/a
2011
Shiau, BW, Wu MC, Lin CC, Chen YC.  2011.  Low-Light-Level Cross-Phase Modulation with Double Slow Light Pulses, May. Physical Review Letters. 106:4., Number 19 AbstractWebsite

We report on the first experimental demonstration of low-light-level cross-phase modulation (XPM) with double slow light pulses based on the double electromagnetically induced transparency (EIT) in cold cesium atoms. The double EIT is implemented with two control fields and two weak fields that drive populations prepared in the two doubly spin-polarized states. Group velocity matching can be obtained by tuning the intensity of either of the control fields. The XPM is based on the asymmetric M-type five-level system formed by the two sets of EIT. Enhancement in the XPM by group velocity matching is observed. Our work advances studies of low-light-level nonlinear optics based on double slow light pulses.

Lin, PY, Shiau BW, Hsiao YF, Chen YC.  2011.  Creation of arbitrary spectra with an acousto-optic modulator and an injection-locked diode laser, Aug. Review of Scientific Instruments. 82:6., Number 8 AbstractWebsite

We use a double-passed acousto-optic modulator (AOM), driven by an arbitrary waveform generator to produce multiple frequency components for a laser with arbitrary frequency spacings. A programmed sequence containing various sections of radio-frequency sinusoidal signal at different frequency is applied to drive the AOM. The diffracted light is used to injection-lock a diode laser. The combined techniques allow us to generate the multi-line spectra for the diode laser with arbitrary frequency spacings in the range of 100 MHz at a relatively high output power of 80 mW and a small power variation of 2%. Such a light source can be used in the application for laser cooling of molecules. (C) 2011 American Institute of Physics. [doi:10.1063/1.3626903]

Lo, HY, Chen YC, Su PC, Chen HC, Chen JX, Yu IA, Chen YF.  2011.  Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels, Apr. Physical Review A. 83:4., Number 4 AbstractWebsite

We report the experimental demonstration of electromagnetically-induced-transparency-based cross-phase-modulation at attojoule or, equivalently, few-hundred-photon levels. A phase shift of 0.005 rad of a probe pulse modulated by a signal pulse with an energy of similar to 100 aJ, equivalent to similar to 400 photons, was observed in a four-level system of cold (87)Rb atoms.

2009
Tu, MF, Ho JJ, Hsieh CC, Chen YC.  2009.  Intense SrF radical beam for molecular cooling experiments, Nov. Review of Scientific Instruments. 80:5., Number 11 AbstractWebsite

We have developed a continuous SrF radical beam for the loading of helium buffer gas cooling. The SrF molecules are efficiently generated by high-temperature chemical reaction of the solid precursor SrF(2) with boron in a graphite oven. The beam properties are characterized with laser-induced fluorescence spectroscopic method. We obtain a molecular flux of up to 2.1 x 10(15) sr(-1) s(-1) at the detection region for all rotational states. The dependence of the flux on oven temperature suggests that even higher flux is possible if a higher temperature in the oven is achieved. (C) 2009 American Institute of Physics. [doi:10.1063/1.3262631]

2008
Lin, YW, Chou HC, Dwivedi PP, Chen YC, Yu IA.  2008.  Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density, Mar. Optics Express. 16:3753-3761., Number 6 AbstractWebsite

We demonstrate a simple method to increase the optical density (OD) of cold atom clouds produced by a magneto-optical trap (MOT). A pair of rectangular anti-Helmholtz coils is used in the MOT to generate the magnetic field that produces the cigar-shaped atom cloud. With 7.2 x 10(8) Rb-87 atoms in the cigar-type MOT, we achieve an OD of 32 as determined by the slow light measurement and this OD is large enough such that the atom cloud can almost contain the entire Gaussian light pulse. Compared to the conventional MOT under the same trapping conditions, the OD is increased by about 2.7 folds by this simple method. In another MOT setup of the cigar-shaped Cs atom cloud, we achieve an OD of 105 as determined by the absorption spectrum of the |6S(1/2), F = 4 > ->| 6P(3/2), F ' = 5 > transition. (C) 2008 Optical Society of America

2006
Laha, S, Chen YC, Gupta P, Simien CE, Martinez YN, Mickelson PG, Nagel SB, Killian TC.  2006.  Kinetic energy oscillations in annular regions of ultracold neutral plasmas, Oct. European Physical Journal D. 40:51-56., Number 1 AbstractWebsite

A study of ion equilibration in annular regions of ultracold strontium plasmas is reported. Plasmas are formed by photoionizing laser-cooled atoms with a pulsed dye laser. The experimental probe is spatially-resolved absorption spectroscopy using the S-2(1/2)-P-2(1/2) transition of the Sr+ ion. The kinetic energy of the ions is calculated from the Doppler broadening of the spectrum, and it displays clear oscillations during the first microsecond after plasma formation. The oscillations, which are a characteristic of strong coulomb coupling, are fit with a simple phenomenological model incorporating damping and density variation in the plasma.

2005
Mickelson, PG, Martinez YN, Saenz AD, Nagel SB, Chen YC, Killian TC, Pellegrini P, Cote R.  2005.  Spectroscopic determination of the s-wave scattering lengths of Sr-86 and Sr-88, Nov 25. Physical Review Letters. 95 AbstractWebsite

We report the use of photoassociative spectroscopy to determine the ground-state s-wave scattering lengths for the main bosonic isotopes of strontium, Sr-86 and Sr-88. Photoassociative transitions are driven with a laser red detuned by up to 1400 GHz from the S-1(0)-P-1(1) atomic resonance at 461 nm. A minimum in the transition amplitude for Sr-86 at -494 +/- 5 GHz allows us to determine the scattering lengths 610a(0)< a(86)< 2300a(0) for Sr-86 and a much smaller value of -1a(0)< a(88)< 13a(0) for Sr-88.

Killian, TC, Chen YC, Gupta P, Laha S, Martinez YN, Mickelson PG, Nagel SB, Saenz AD, Simien CE.  2005.  Ultracold neutral plasmas, May. Plasma Physics and Controlled Fusion. 47:A297-A306. AbstractWebsite

Ultracold neutral plasmas are formed by photo-ionizing laser-cooled atoms near the ionization threshold. Through the application of atomic physics techniques and diagnostics, these experiments stretch the boundaries of traditional neutral plasma physics. The electron temperature in these plasmas ranges from 1 to 1000 K and the ion temperature is around 1 K. The density can approach 10(11) cm(-3). Fundamental interest stems from the possibility of creating strongly coupled plasmas, but recombination, collective modes, and thermalization in these systems have also been studied. Optical absorption images of a strontium plasma, using the Sr+ S-2(1/2) -> P-2(1/2) transition at 422 mn, depict the density profile of the plasma, and probe kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum measures the ion velocity distribution, which gives an accurate measure of the ion dynamics in the first microsecond after photo-ionization.

Nagel, SB, Mickelson PG, Saenz AD, Martinez YN, Chen YC, Killian TC, Pellegrini P, Cote R.  2005.  Photoassociative spectroscopy at long range in ultracold strontium, Mar 4. Physical Review Letters. 94 AbstractWebsite

We report photoassociative spectroscopy of Sr-88(2) in a magneto-optical trap operating on the S-1(0)-->P-3(1) intercombination line at 689 nm. Photoassociative transitions are driven with a laser red detuned by 600-2400 MHz from the S-1(0)-->P-1(1) atomic resonance at 461 nm. Photoassociation takes place at extremely large internuclear separation, and the photoassociative spectrum is strongly affected by relativistic retardation. A fit of the transition frequencies determines the P-1(1) atomic lifetime (tau=5.22+/-0.03 ns) and resolves a discrepancy between experiment and recent theoretical calculations.

Killian, TC, Chen YC, Gupta P, Laha S, Martinez YN, Mickelson PG, Nagel SB, Saenz AD, Simien CE.  2005.  Absorption imaging and spectroscopy of ultracold neutral plasmas, Jan 28. Journal of Physics B-Atomic Molecular and Optical Physics. 38:S351-S362. AbstractWebsite

Absorption imaging and spectroscopy can probe the dynamics of an ultracold neutral plasma during the first few microseconds after its creation. Quantitative analysis of the data, however, is complicated by the inhomogeneous density distribution, expansion of the plasma and possible lack of global thermal equilibrium for the ions. In this paper, we describe methods for addressing these issues. Using simple assumptions about the underlying temperature distribution and ion motion, the Doppler-broadened absorption spectrum obtained from plasma images can be related to the average temperature in the plasma.

Simien, CE, Chen YC, Gupta P, Laha S, Martinez YN, Mickelson PG, Nagel SB, Killian TC.  2005.  Absorption imaging of ultracold neutral plasmas, Apr. Ieee Transactions on Plasma Science. 33:540-541. AbstractWebsite

We report optical absorption imaging of ultracold neutral plasmas. Imaging allows direct observation of the ion density profile and expansion of the plasma. The frequency dependence of the plasma's optical depth gives the ion absorption spectrum, which is broadened by the ion motion. We use the spectral width to monitor ion equilibration in the first 250 ns after plasma formation. On a microsecond time scale, we observe the radial acceleration of ions resulting from pressure exerted by the trapped electron gas.

2004
Chen, YC, Simien CE, Laha S, Gupta P, Martinez YN, Mickelson PG, Nagel SB, Killian TC.  2004.  Electron screening and kinetic-energy oscillations in a strongly coupled plasma, Dec 31. Physical Review Letters. 93 AbstractWebsite

We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma.