Intense SrF radical beam for molecular cooling experiments

Tu, MF, Ho JJ, Hsieh CC, Chen YC.  2009.  Intense SrF radical beam for molecular cooling experiments, Nov. Review of Scientific Instruments. 80:5., Number 11


We have developed a continuous SrF radical beam for the loading of helium buffer gas cooling. The SrF molecules are efficiently generated by high-temperature chemical reaction of the solid precursor SrF(2) with boron in a graphite oven. The beam properties are characterized with laser-induced fluorescence spectroscopic method. We obtain a molecular flux of up to 2.1 x 10(15) sr(-1) s(-1) at the detection region for all rotational states. The dependence of the flux on oven temperature suggests that even higher flux is possible if a higher temperature in the oven is achieved. (C) 2009 American Institute of Physics. [doi:10.1063/1.3262631]


ISI Document Delivery No.: 536RITimes Cited: 0Cited Reference Count: 35Cited References: Carr LD, 2009, NEW J PHYS, V11 Patterson D, 2009, NEW J PHYS, V11 Wall TE, 2008, PHYS REV A, V78 Narevicius E, 2008, PHYS REV LETT, V100 Hogan SD, 2007, PHYS REV A, V76, DOI 10.1103/PhysRevA.76.023412 Patterson D, 2007, J CHEM PHYS, V126 Kohler T, 2006, REV MOD PHYS, V78, P1311, DOI 10.1103/RevModPhys.78.1311 Rabl P, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.033003 Fulton R, 2006, NAT PHYS, V2, P465, DOI 10.1038/nphys339 Chen L, 2006, J CHEM PHYS, V124, DOI 10.1063/1.2139092 Maxwell SE, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.173201 Hornkohl JO, 2005, APPL OPTICS, V44, P3686, DOI 10.1364/AO.44.003686 Di Rosa MD, 2004, EUR PHYS J D, V31, P395 Egorov D, 2004, EUR PHYS J D, V31, P307, DOI 10.1140/epjd/e2004-00140-1 Blinov BB, 2004, NATURE, V428, P153, DOI 10.1038/nature02377 KERMAN J, 2004, PHYS REV LETT, V92 Elioff MS, 2003, SCIENCE, V302, P1940, DOI 10.1126/science.1090679 Rangwala SA, 2003, PHYS REV A, V67, DOI 10.1103/PhysRevA.67.043406 BROWN J, 2003, ROTATIONAL SPECTROSC Gupta M, 2001, J PHYS CHEM A, V105, P1626, DOI 10.1021/jp002640u Rugamas F, 2000, MEAS SCI TECHNOL, V11, P1750, DOI 10.1088/0957-0233/11/12/315 Bethlem HL, 1999, PHYS REV LETT, V83, P1558, DOI 10.1103/PhysRevLett.83.1558 Teule JM, 1998, J PHYS CHEM A, V102, P9482, DOI 10.1021/jp981993e Weinstein JD, 1998, NATURE, V395, P148 Colarusso P, 1996, J MOL SPECTROSC, V175, P158, DOI 10.1006/jmsp.1996.0019 KEIJZER F, 1995, J MOL SPECTROSC, V169, P511, DOI 10.1006/jmsp.1995.1043 STEIMLE TC, 1993, J MOL SPECTROSC, V158, P487, DOI 10.1006/jmsp.1993.1094 KANDLER J, 1989, CHEM PHYS LETT, V155, P470, DOI 10.1016/0009-2614(89)87188-X ERNST WE, 1985, CHEM PHYS LETT, V113, P351, DOI 10.1016/0009-2614(85)80379-1 CHILDS WJ, 1981, J MOL SPECTROSC, V87, P522, DOI 10.1016/0022-2852(81)90422-7 DOMAILLE PJ, 1977, J MOL SPECTROSC, V68, P146, DOI 10.1016/0022-2852(77)90430-1 STEIMLE TC, 1977, J MOL SPECTROSC, V68, P134, DOI 10.1016/0022-2852(77)90429-5 DAGDIGIA.PJ, 1974, J CHEM PHYS, V60, P2330, DOI 10.1063/1.1681366 HILDENBR.DL, 1968, J CHEM PHYS, V48, P3657, DOI 10.1063/1.1669666 TU MF, UNPUBTu, Ming-Feng Ho, Jia-Jung Hsieh, Chih-Chiang Chen, Ying-ChengNSC[96-2112-M-001-006, 97-2628-M-001-028]This work is supported by the National Science Council of Taiwan under NSC Grant Nos. 96-2112-M-001-006 and 97-2628-M-001-028.AMER INST PHYSICSMELVILLE