Intense SrF radical beam for molecular cooling experiments

Citation:
Tu, MF, Ho JJ, Hsieh CC, Chen YC.  2009.  Intense SrF radical beam for molecular cooling experiments, Nov. Review of Scientific Instruments. 80:5., Number 11

Abstract:

We have developed a continuous SrF radical beam for the loading of helium buffer gas cooling. The SrF molecules are efficiently generated by high-temperature chemical reaction of the solid precursor SrF(2) with boron in a graphite oven. The beam properties are characterized with laser-induced fluorescence spectroscopic method. We obtain a molecular flux of up to 2.1 x 10(15) sr(-1) s(-1) at the detection region for all rotational states. The dependence of the flux on oven temperature suggests that even higher flux is possible if a higher temperature in the oven is achieved. (C) 2009 American Institute of Physics. [doi:10.1063/1.3262631]

Notes:

ISI Document Delivery No.: 536RITimes Cited: 0Cited Reference Count: 35Cited References: Carr LD, 2009, NEW J PHYS, V11 Patterson D, 2009, NEW J PHYS, V11 Wall TE, 2008, PHYS REV A, V78 Narevicius E, 2008, PHYS REV LETT, V100 Hogan SD, 2007, PHYS REV A, V76, DOI 10.1103/PhysRevA.76.023412 Patterson D, 2007, J CHEM PHYS, V126 Kohler T, 2006, REV MOD PHYS, V78, P1311, DOI 10.1103/RevModPhys.78.1311 Rabl P, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.033003 Fulton R, 2006, NAT PHYS, V2, P465, DOI 10.1038/nphys339 Chen L, 2006, J CHEM PHYS, V124, DOI 10.1063/1.2139092 Maxwell SE, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.173201 Hornkohl JO, 2005, APPL OPTICS, V44, P3686, DOI 10.1364/AO.44.003686 Di Rosa MD, 2004, EUR PHYS J D, V31, P395 Egorov D, 2004, EUR PHYS J D, V31, P307, DOI 10.1140/epjd/e2004-00140-1 Blinov BB, 2004, NATURE, V428, P153, DOI 10.1038/nature02377 KERMAN J, 2004, PHYS REV LETT, V92 Elioff MS, 2003, SCIENCE, V302, P1940, DOI 10.1126/science.1090679 Rangwala SA, 2003, PHYS REV A, V67, DOI 10.1103/PhysRevA.67.043406 BROWN J, 2003, ROTATIONAL SPECTROSC Gupta M, 2001, J PHYS CHEM A, V105, P1626, DOI 10.1021/jp002640u Rugamas F, 2000, MEAS SCI TECHNOL, V11, P1750, DOI 10.1088/0957-0233/11/12/315 Bethlem HL, 1999, PHYS REV LETT, V83, P1558, DOI 10.1103/PhysRevLett.83.1558 Teule JM, 1998, J PHYS CHEM A, V102, P9482, DOI 10.1021/jp981993e Weinstein JD, 1998, NATURE, V395, P148 Colarusso P, 1996, J MOL SPECTROSC, V175, P158, DOI 10.1006/jmsp.1996.0019 KEIJZER F, 1995, J MOL SPECTROSC, V169, P511, DOI 10.1006/jmsp.1995.1043 STEIMLE TC, 1993, J MOL SPECTROSC, V158, P487, DOI 10.1006/jmsp.1993.1094 KANDLER J, 1989, CHEM PHYS LETT, V155, P470, DOI 10.1016/0009-2614(89)87188-X ERNST WE, 1985, CHEM PHYS LETT, V113, P351, DOI 10.1016/0009-2614(85)80379-1 CHILDS WJ, 1981, J MOL SPECTROSC, V87, P522, DOI 10.1016/0022-2852(81)90422-7 DOMAILLE PJ, 1977, J MOL SPECTROSC, V68, P146, DOI 10.1016/0022-2852(77)90430-1 STEIMLE TC, 1977, J MOL SPECTROSC, V68, P134, DOI 10.1016/0022-2852(77)90429-5 DAGDIGIA.PJ, 1974, J CHEM PHYS, V60, P2330, DOI 10.1063/1.1681366 HILDENBR.DL, 1968, J CHEM PHYS, V48, P3657, DOI 10.1063/1.1669666 TU MF, UNPUBTu, Ming-Feng Ho, Jia-Jung Hsieh, Chih-Chiang Chen, Ying-ChengNSC[96-2112-M-001-006, 97-2628-M-001-028]This work is supported by the National Science Council of Taiwan under NSC Grant Nos. 96-2112-M-001-006 and 97-2628-M-001-028.AMER INST PHYSICSMELVILLE

Website