Mickelson, PG, Martinez YN, Saenz AD, Nagel SB, Chen YC, Killian TC, Pellegrini P, Cote R.
2005.
Spectroscopic determination of the s-wave scattering lengths of Sr-86 and Sr-88, Nov 25. Physical Review Letters. 95
AbstractWe report the use of photoassociative spectroscopy to determine the ground-state s-wave scattering lengths for the main bosonic isotopes of strontium, Sr-86 and Sr-88. Photoassociative transitions are driven with a laser red detuned by up to 1400 GHz from the S-1(0)-P-1(1) atomic resonance at 461 nm. A minimum in the transition amplitude for Sr-86 at -494 +/- 5 GHz allows us to determine the scattering lengths 610a(0)< a(86)< 2300a(0) for Sr-86 and a much smaller value of -1a(0)< a(88)< 13a(0) for Sr-88.
Killian, TC, Chen YC, Gupta P, Laha S, Martinez YN, Mickelson PG, Nagel SB, Saenz AD, Simien CE.
2005.
Ultracold neutral plasmas, May. Plasma Physics and Controlled Fusion. 47:A297-A306.
AbstractUltracold neutral plasmas are formed by photo-ionizing laser-cooled atoms near the ionization threshold. Through the application of atomic physics techniques and diagnostics, these experiments stretch the boundaries of traditional neutral plasma physics. The electron temperature in these plasmas ranges from 1 to 1000 K and the ion temperature is around 1 K. The density can approach 10(11) cm(-3). Fundamental interest stems from the possibility of creating strongly coupled plasmas, but recombination, collective modes, and thermalization in these systems have also been studied. Optical absorption images of a strontium plasma, using the Sr+ S-2(1/2) -> P-2(1/2) transition at 422 mn, depict the density profile of the plasma, and probe kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum measures the ion velocity distribution, which gives an accurate measure of the ion dynamics in the first microsecond after photo-ionization.
Nagel, SB, Mickelson PG, Saenz AD, Martinez YN, Chen YC, Killian TC, Pellegrini P, Cote R.
2005.
Photoassociative spectroscopy at long range in ultracold strontium, Mar 4. Physical Review Letters. 94
AbstractWe report photoassociative spectroscopy of Sr-88(2) in a magneto-optical trap operating on the S-1(0)-->P-3(1) intercombination line at 689 nm. Photoassociative transitions are driven with a laser red detuned by 600-2400 MHz from the S-1(0)-->P-1(1) atomic resonance at 461 nm. Photoassociation takes place at extremely large internuclear separation, and the photoassociative spectrum is strongly affected by relativistic retardation. A fit of the transition frequencies determines the P-1(1) atomic lifetime (tau=5.22+/-0.03 ns) and resolves a discrepancy between experiment and recent theoretical calculations.