Publications

User warning: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ')) ORDER BY timestamp DESC' at line 1 query: SELECT timestamp FROM views_content_cache WHERE (()) ORDER BY timestamp DESC in _db_query() (line 169 of /var/www/html/iams/project/includes/database.mysqli.inc).
Export 1109 results:
Sort by: Author Title Type [ Year  (Desc)]
2012
Barraza-Lopez, S, Kindermann M, Chou MY.  2012.  Charge Transport through Graphene Junctions with Wetting Metal Leads, Jul. Nano Letters. 12:3424-3430., Number 7 AbstractWebsite

Graphene is believed to be an excellent candidate material for next-generation electronic devices. However, one needs to take into account the nontrivial effect of metal contacts in order to precisely control the charge injection and extraction processes. We have performed transport calculations for graphene junctions with wetting metal leads (metal leads that bind covalently to graphene) using nonequilibrium Green's functions and density functional theory. Quantitative information is provided on the increased resistance with respect to ideal contacts and on the statistics of current fluctuations. We find that charge transport through the studied two-terminal graphene junction with Ti contacts is pseudo-diffusive up to surprisingly high energies.

Wang, ZF, Liu F, Chou MY.  2012.  Fractal Landau-Level Spectra in Twisted Bilayer Graphene, Jul. Nano Letters. 12:3833-3838., Number 7 AbstractWebsite

The Hofstadter butterfly spectrum for Landau levels in a two-dimensional periodic lattice is a rare example exhibiting fractal properties in a truly quantum system. However, the observation of this physical phenomenon in a conventional material will require a magnetic field strength several orders of magnitude larger than what can be produced in a modern laboratory. It turns out that for a specific range of rotational angles twisted bilayer graphene serves as a special system with a fractal energy spectrum under laboratory accessible magnetic field strengths. This unique feature arises from an intriguing electronic structure induced by the interlayer coupling. Using a recursive tight-binding method, we systematically map out the spectra of these Landau levels as a function of the rotational angle. Our results give a complete description of LLs in twisted bilayer graphene for both commensurate and incommensurate rotational angles and provide quantitative predictions of magnetic field strengths for observing the fractal spectra in these graphene systems.

Yan, JA, Varga K, Chou MY.  2012.  Optical phonon anomaly in Bernal stacked bilayer graphene with ultrahigh carrier densities, Jul. Physical Review B. 86:5., Number 3 AbstractWebsite

Electron-phonon coupling (EPC) in Bernal stacked bilayer graphene (BLG) at different doping levels is studied by first-principles calculations. The phonons considered are long-wavelength high-energy symmetric and antisymmetric optical modes. Both are shown to have distinct EPC-induced phonon linewidths and frequency shifts as a function of the Fermi level E-F. We find that the antisymmetric mode has a strong coupling with the lowest two conduction bands when the Fermi level E-F is nearly 0.5 eV above the neutrality point, giving rise to a giant linewidth (more than 100 cm(-1)) and a significant frequency softening (similar to 60 cm(-1)). Our ab initio calculations show that the origin of the dramatic change arises from the unusual band structure in BLG. The results highlight the band structure effects on the EPC in BLG in the high-carrier-density regime.

Chang, CC, Hsieh MC, Lin JC, Chang TC.  2012.  Selective photodynamic therapy based on aggregation-induced emission enhancement of fluorescent organic nanoparticles, Jan. Biomaterials. 33:897-906., Number 3 AbstractWebsite

Three binary molecule conjugates were designed and synthesized by conjugating a chromophore (3, 6-bis-(1-methyl-4-vinylpyridinium)-carbazole diiodide, BMVC) to mono-, bis- and trishydroxyl photosensitizers, respectively. BMVC plays the role of cancer cells recognizer; AIEE (aggregation-induced emission enhancement) generator and FRET (Fluorescence Resonance Energy Transfer) donor. The self assembling properties of these binary conjugates result in different degrees of AIEE and then achieve the formations of FONs (fluorescent organic nanoparticles), which present efficient FRET and singlet oxygen generations. Biologically, FONs-photosensitizers from these compounds were much more phototoxicities to cancer cell than to normal cell without significant dark toxicity. In addition, their intracellular fluorescent colors switching upon photo-excitation are expected to be used for further cell death biomarker applications. This improved photodynamic activity might be due to the aggregation of compounds in the cell that form FONs which can promote PDT (photodynamic therapy) and are observed in cancer cell but not normal cell.

Lin, C-C, Wu M-C, Shiau B-W, Chen Y-H, Yu IA, Chen Y-F, Chen Y-C.  2012.  Enhanced all-optical switching with double slow light pulses, Dec 28. Physical Review A. 86 AbstractWebsite
n/a
Chien, CH, Chen WW, Wu JT, Chang TC.  2012.  Investigation of lipid homeostasis in living Drosophila by coherent anti-Stokes Raman scattering microscopy, Dec. J Biomed Opt. 17:126001., Number 12 AbstractWebsite

To improve our understanding of lipid metabolism, Drosophila is used as a model animal, and its lipid homeostasis is monitored by coherent anti-Stokes Raman scattering microscopy. We are able to achieve in vivo imaging of larval fat body (analogous to adipose tissue in mammals) and oenocytes (analogous to hepatocytes) in Drosophila larvae at subcellular level without any labeling. By overexpressing two lipid regulatory proteins--Brummer lipase (Bmm) and lipid storage droplet-2 (Lsd-2)--we found different phenotypes and responses under fed and starved conditions. Comparing with the control larva, we observed more lipid droplet accumulation by approximately twofold in oenocytes of fat-body-Bmm-overexpressing (FB-Bmm-overexpressing) mutant under fed condition, and less lipid by approximately fourfold in oenocytes of fat-body-Lsd-2-overexpressing (FB-Lsd-2-overexpressing) mutant under starved condition. Moreover, together with reduced size of lipid droplets, the lipid content in the fat body of FB-Bmm-overexpressing mutant decreases much faster than that of the control and FB-Lsd-2-overexpressing mutant during starvation. From long-term starvation assay, we found FB-Bmm-overexpressing mutant has a shorter lifespan, which can be attributed to faster consumption of lipid in its fat body. Our results demonstrate in vivo observations of direct influences of Bmm and Lsd-2 on lipid homeostasis in Drosophila larvae.

Tsai, C-C, Hung H-H, Liu C-P, Chen Y-T, Pan C-Y.  2012.  Changes in plasma membrane surface potentials of PC12 cells as measured by Kelvin probe force microscopy. PLoS ONE. 7(4):e33849.view
Das, D, Raha D, Chen WC, Chen KH, Wu CT, Chen LC.  2012.  Effect of substrate bias on the promotion of nanocrystalline silicon growth from He-diluted SiH4plasma at low temperature. J. Mater. Res.. 27:1303.
Chou, CT, Tang WL, Lin CH, Liu CH, Chen LC, Chen KH.  2012.  Effect of substrate temperature on orientation of subphthalocyanine molecule in organic photovoltaic cells. Thin Solid Films. 520:2289-2292.
Han, HC, Tseng CA, Du CY, A.Ganguly, Chong CW, Wang SB, Lin CF, Chang SH, Su CC, Lee JH, Chen KH, Chen LC.  2012.  Enhancing efficiency with fluorinated interlayer in small molecule organic solar cell. J. Mater. Chem.. 22:22899.
Chuang, HC, Chang CR, Chen C-C, Chang MS.  2012.  An external cavity diode laser using a volume holographic grating. Optics and Laser Technology. 44(7):2182-2185.
Wang, SB, Chang SJ, Hu MS, Chong CW, Huang BR, Chen KH, Chen LC.  2012.  Gold nanoparticles-modulated conductivity in gold peapodded silica nanowire. Nanoscale. 4:3660-3664.
Chen, YT, Tsai WC, Chen WY, Hsiao CL, Hsu HC, Chang WH, Hsu TM, Chen KH, Chen LC.  2012.  Growth of sparse arrays of narrow GaNnanorods hosting spectrally stable InGaNquantum disks. Opt. Express. 20:16166-16173.
Hsu, Y-K, Chen Y-C, Lin Y-G, Chen L-C, Chen K-H.  2012.  High-cell-voltage supercapacitor of carbon nanotube/carbon cloth operating in neutral aqueous solution. Journal of Materials Chemistry. 22:3383-3387.
Nataraj, SK, Wang CH, Huang HC, Du HY, Wang SF, Chen YC, Chen LC, Chen KH.  2012.  Highly proton-selective biopolymer layer-coated ion-exchange membrane for direct methanol fuel cells. ChemSusChem.. 5:392-395.
Aravind, K, Su YW, Chun DS, Kuo W, Wu CS, Chang-Liao KS, Chen KH, Chen LC, Chen CD.  2012.  Magnetic-field and temperature dependence of the energy gap in InN nanobelt. AIP Advances. 2:012155.
Chang, K-S, Sun C-J, Chiang P-L, Chou A-C, Lin M-C, Liang C, Hung H-H, Yeh Y-H, Chen C-D, Pan C-Y, Chen Y-T.  2012.  Monitoring extracellular K+ flux with a valinomycin-coated silicon nanowire field-effect transistor. Biosensors and Bioelectronics. 31:137–143.view pdf
Chiang, P-L, Chou T-C, Wu T-H, Li C-C, Liao C-D, Lin J-Y, Tsai M-S, Tsai C-C, Sun C-J, Wang C-H, Fang J-M, Chen Y-T.  2012.  Nanowire transistor-based ultrasensitive virus detection with reversible surface functionalization. Chemistry – An Asian Journal. 7:2073–2079.view pdf
Wong, DP, Lien HT, Chen YT, Chen KH, Chen LC.  2012.  Patterned growth of nanocrystalline silicon thin films through magnesiothermic reduction of soda lime glass. Green Chemistry. 14:896-900.
Wong, D-P, Lien H-T, Chen Y-T, Chen K-H, Chen L-C.  2012.  Patterned growth of nanocrystalline silicon thin films through magnesiothermic reduction of soda lime glass. Green Chemistry. 14:896-900.view
Lin*, YG, Lin* CK, Miller JT, Hsu YK, Chen YC, Chen LC, Chen KH.  2012.  Photochemically active reduced graphene oxide with controllable oxidation level. RSC Advances. 2:11258-11562.
Chen, RS, Tsai HY, Huang YS, Chen YT, Chen LC, Chen KH.  2012.  Photoconduction efficiencies in GaN nanowires grown by chemical vapor deposition and molecular beam epitaxy: acomparison study. Appl. Phys. Lett.. 101:113109.
Lin, YG, Hsu YK, Wang SB, Chen YC, Chen LC, Chen KH.  2012.  Plasmonic Ag@Ag3PO4 Nanoparticle Photosensitized ZnO Nanorod-Array Photoanodes for Water Oxidation. Energy & Environ. Sci.. 5:8917-8922.
Karlsson, KF, Amloy S, Chen YT, Chen KH, Hsu HC, Hsiao CL, Chen LC, Holtz PO.  2012.  Polarized emission and excitonic fine structure energies of InGaN quantum dots. Physica B-Condensed Matter. 407:1553.
Huang, CC, Chang MS, Yip SK.  2012.  Preparation of two-particle total-hyperfine spin-singlet states via spin-changing dynamics. Physical Review A . 86:013403.