Publications

User warning: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ')) ORDER BY timestamp DESC' at line 1 query: SELECT timestamp FROM views_content_cache WHERE (()) ORDER BY timestamp DESC in _db_query() (line 169 of /var/www/html/iams/project/includes/database.mysqli.inc).
Export 1106 results:
Sort by: Author Title Type [ Year  (Desc)]
2011
Liu, C-Y, Tsai M-T, Tsai P-Y, Liu Y-T, Chen SY, Chang AHH, Lin K-C.  2011.  Gas-phase photodissociation of CH3CHBrCOCl at 248 nm: Detection of molecular fragments by time-resolved FT-IR spectroscopy. ChemPhysChem. 12:206-216., Number 1 AbstractWebsite

By employing time-resolved Fourier transform infrared emission spectroscopy, the fragments HCl (v=1-3), HBr (v=1), and CO (v=1-3) are detected in one-photon dissociation of 2-bromopropionyl chloride (CH3CHBrCOCl) at 248 nm. Ar gas is added to induce internal conversion and to enhance the fragment yields. The time-resolved high-resolution spectra of HCl and CO were analyzed to determine the rovibrational energy deposition of 10.0A ±0.2 and 7.4A ±0.6 kcal mol-1, respectively, while the rotational energy in HBr is evaluated to be 0.9A ±0.1 kcal mol-1. The branching ratio of HCl(v>0)/HBr(v>0) is estimated to be 1:0.53. The bond selectivity of halide formation in the photolysis follows the same trend as the halogen atom elimination. The probability of HCl contribution from a hot Cl reaction with the precursor is negligible according to the measurements of HCl amount by adding an active reagent, Br2, in the system. The HCl elimination channel under Ar addition is verified to be slower by two orders of magnitude than the Cl elimination channel. With the aid of ab initio calculations, the observed fragments are dissociated from the hot ground state CH3CHBrCOCl. A two-body dissociation channel is favored leading to either HCl+CH3CBrCO or HBr+CH2CHCOCl, in which the CH 3CBrCO moiety may further undergo secondary dissociation to release CO. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Chang, H-C, Chang S-C, Hung T-C, Jiang J-C, Kuo J-L, Lin SH.  2011.  A High-Pressure Study of the Effects of TiO2 Nanoparticles on the Structural Organization of Ionic Liquids. The Journal of Physical Chemistry C. 115:23778-23783., Number 48 AbstractWebsite

The local structures between nano-TiO2 and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI+TFS–) and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMI+TFS–) were investigated using high-pressure infrared spectroscopy. No significant changes in C–H spectral features of EMI+TFS– were observed in the presence of nano-TiO2 under ambient pressure. As the EMI+TFS–/nano-TiO2 mixture was compressed to 0.3 GPa, the imidazolium C–H absorptions became two sharp bands at 3108 and 3168 cm–1, respectively, and the alkyl C–H stretching absorption exhibits a new band at 3010 cm–1 associated with a weaker band at 3028 cm–1. It appears that pressure stabilizes the isolated conformations due to pressure-enhanced imidazolium C–H–-nano-TiO2 interactions. Our results also reveal that alkyl C–H groups play non-negligible roles at the conditions of high pressures. The results of BMI+TFS–/nano-TiO2 are remarkably different from what is revealed for EMI+TFS–/nano-TiO2. The spectral features and band frequencies of BMI+TFS–/nano-TiO2 are almost identical to those of pure BMI+TFS– under various pressures. This study demonstrates that changes to the alkyl chain length of the cation could be made to control the order and strength of ionic liquid/nano-TiO2 interactions.

Kao, M-J, Chen C-H, Tsai P-Y, Lim T-S, Lin K-C, Luh T-Y.  2011.  Hydrogen-bonding-induced one-handed helical polynorbornenes appended with chiral alaninegland. Macromolecular Chemistry and Physics. 212:2328-2338., Number 21 AbstractWebsite

Polynorbornenes appended with anthracene and chiral alanine linkers are synthesized. Hydrogen bonding between the adjacent bisamidic linkers brings adjacent anthracene chromophores in a more suitable orientation for exciton coupling and renders one-handed helical structures for these polymers. Excimer formation is observed from their emission spectra. Monoamidic linkers provide only one hydrogen bond, which would be less robust and result in much lower circular dichroic response. Hydrogen bonding between the adjacent chiral alanine linkers brings appended anthracene in a more suitable orientation for exciton coupling and excimer formation, rendering one-handed helical structures in polynorbornenes. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Chen, S-Y, Tsai P-Y, Lin H-C, Wu C-C, Lin K-C, Sun BJ, Chang AHH.  2011.  I2 molecular elimination in single-photon dissociation of CH2I2 at 248 nm by using cavity ring-down absorption spectroscopy. Journal of Chemical Physics. 134, Number 3 AbstractWebsite

Following single-photon dissociation of CH2I2 at 248 nm, I2 molecular elimination is detected by using cavity ring-down absorption spectroscopy. The technique comprises two laser beams propagating in a perpendicular configuration, in which a tunable laser beam along the axis of the ring-down cell probes the I2 fragment in the B 3 ou + - X 1 g + transition. The nascent vibrational populations for v 0, 1, and 2 levels are obtained with a population ratio of 1:(0.65 0.10):(0.30 0.05), corresponding to a Boltzmann-like vibrational temperature of 544 73 K. The quantum yield of the ground state I2 elimination reaction is determined to be 0.0040 0.0025. With the aid of ab initio potential energy calculations, the pathway of molecular elimination is proposed on the energetic ground state CH2I2 via internal conversion, followed by asynchronous three-center dissociation. A positive temperature effect supports the proposed mechanism. © 2011 American Institute of Physics.

Chao, M-H, Tsai P-Y, Lin K-C.  2011.  Molecular elimination of methyl formate in photolysis at 234 nm: Roaming vs. transition state-type mechanism. Physical Chemistry Chemical Physics. 13:7154-7161., Number 15 AbstractWebsite

Ion imaging coupled with (2 + 1) resonance-enhanced multiphoton ionization (REMPI) technique is employed to probe CO(v″ = 0) fragments at different rotational levels following photodissociation of methyl formate (HCOOCH 3) at 234 nm. When the rotational level, J″CO, is larger than 24, only a broad translational energy distribution extending beyond 70 kcal mol-1 with an average energy of about 23 kcal mol -1 appears. The dissociation process is initiated on the energetic ground state HCOOCH3 that surpasses a tight transition state along the reaction coordinate prior to breaking into CO + CH3OH. This molecular dissociation pathway accounts for the CO fragment with larger rotational energy and large translational energy. As J″CO decreases, a bimodal distribution arises with one broad component and the other sharp component carrying the average energy of only 1-2 kcal mol-1. The branching ratio of the sharp component increases with a decrease of J″CO; (7.3 ± 0.6)% is reached as the image is probed at J″CO = 10. The production of a sharp component is ascribed to a roaming mechanism that has the following features: a small total translational energy, a low rotational energy partitioning in CO, but a large internal energy in the CH3OH co-product. The internal energy deposition in the fragments shows distinct difference from those via the conventional transition state. © the Owner Societies 2011.

Zhang, W, Lin C-T, Liu K-K, Tite T, Su C-Y, Chang C-H, Lee Y-H, Chu C-W, Wei K-H, Kuo J-L, Li L-J.  2011.  Opening an Electrical Band Gap of Bilayer Graphene with Molecular Doping. ACS Nano. 5:7517-7524., Number 9 AbstractWebsite

The opening of an electrical band gap in graphene is crucial for its application for logic circuits. Recent studies have shown that an energy gap in Bernal-stacked bilayer graphene can be generated by applying an electric displacement field. Molecular doping has also been proposed to open the electrical gap of bilayer graphene by breaking either in-plane symmetry or inversion symmetry; however, no direct observation of an electrical gap has been reported. Here we discover that the organic molecule triazine is able to form a uniform thin coating on the top surface of a bilayer graphene, which efficiently blocks the accessible doping sites and prevents ambient p-doping on the top layer. The charge distribution asymmetry between the top and bottom layers can then be enhanced simply by increasing the p-doping from oxygen/moisture to the bottom layer. The on/off current ratio for a bottom-gated bilayer transistor operated in ambient condition is improved by at least 1 order of magnitude. The estimated electrical band gap is up to ∼111 meV at room temperature. The observed electrical band gap dependence on the hole-carrier density increase agrees well with the recent density-functional theory calculations. This research provides a simple method to obtain a graphene bilayer transistor with a moderate on/off current ratio, which can be stably operated in air without the need to use an additional top gate.

Tsai, P-Y, Che D-C, Nakamura M, Lin K-C, Kasai T.  2011.  Orientation dependence for Br formation in the reaction of oriented OH radical with HBr molecule. Physical Chemistry Chemical Physics. 13:1419-1423., Number 4 AbstractWebsite

The orientation dependence of Br-atom formation in the reaction of the oriented OH radical with the HBr molecule using the hexapole electrostatic field was studied. Experimental results for the orientation dependence in the reaction were analyzed using a Legendre polynomial fit. The results show two reactive sites. It was found that O-end attack is most favored for this reaction, and that H-end attack also shows a pronounced reactivity. The reactivity of the side-ways attack was found to be small. By comparing the results of the orientation dependence in the reaction with studies of inelastic collisions and theoretical calculations, two reaction pathways are proposed. Reaction by O-end attack is followed by a direct abstraction of the H-atom from the HBr molecule. The mechanism for H-end attack may have H-atom migration from HBr to form the water molecule. © 2011 the Owner Societies.

Tan, OZ, Wu MCH, Chihaia V, Kuo J-L.  2011.  Physisorption Structure of Water on the GaN Polar Surface: Force Field Development and Molecular Dynamics Simulations. The Journal of Physical Chemistry C. 115:11684-11693., Number 23 AbstractWebsite

The adsorption mechanism of water on the GaN (0001) polar surface is investigated via both the Density Functional Theory (DFT) method and its derived classical force field. The physisorption binding energy and the adsorption geometry of the water molecule on the clean Ga-terminated surface are analyzed via the first-principle static calculations. The adsorption energy hypersurfaces are then extracted to be used in the fitting of the interaction potentials between water and GaN. Classical molecular dynamics (MD) simulations based on the developed force field are performed for the interfacial system of liquid water and the GaN surface slab. From our computations, the interfacial water exhibits significant oscillatory profiles for the atomic densities and the molecular orientations. Further data analysis suggests a highly confined first layer with the O being locked right upon the surface Ga atoms and the H pointing toward the neighboring O to form the weakened hydrogen bonds. A bilayer configuration with opposite dipole orientations is consequently characterized as the wetting structure on the GaN polar surface and is explained by the anisotropic perturbations from the surface polar sites. Our simulations would be helpful to provide an atomistic picture for the water adsorption configuration on this semiconductor surface and would be useful in the relevant nanofluidic and nanoengineering applications.

Zhang, F, Wang Y, Chou MY.  2011.  Theoretical study of the vibrational properties of NaAlH(4) with AlH(3) vacancies. Faraday Discussions. 151:243-251. AbstractWebsite

It has been suggested that the diffusion of AlH(3) vacancies plays an essential role in the decomposition of NaAlH(4), a prototypical material for hydrogen storage. We find from first-principles calculations that the AlH(3) vacancy induces several isolated vibrational modes that are highly localized in the vacancy region with frequencies within the phonon gaps of pure NaAlH(4) in both the a and g phases. Thus, the proposed existence of AlH(3) vacancies in the dehydrogenation reaction of NaAlH(4) can be possibly confirmed with the experimental detection of these unique vibrational modes associated with the AlH(3) vacancy.

2010
Utas, OA, Denisov NV, Kotlyar VG, Zotov AV, Saranin AA, Chou JP, Lai MY, Wei CM, Wang YL.  2010.  Cooperative phenomena in self-assembled nucleation of 3 x 4-In/Si(100) surface magic clusters, {JUL 15}. SURFACE SCIENCE. 604:1116-1120., Number {13-14} Abstract

n/a

Lee, CM, Lee RCH, Ruan WY, Chou MY.  2010.  Energy spectra of a single-electron magnetic dot using the massless Dirac-Weyl equation, Sep. Journal of Physics-Condensed Matter. 22:4., Number 35 AbstractWebsite

In this paper, we study the low-lying energy spectra of a two-dimensional (2D) graphene-based magnetic dot in a perpendicular and radially inhomogeneous magnetic field with the use of the massless Dirac-Weyl equation. Numerical calculations are performed using 2D harmonic basis states for direct diagonalization. Effects of both the dot size and the magnetic field on the low-lying energy spectra are discussed.

Yan, JA, Chou MY.  2010.  Oxidation functional groups on graphene: Structural and electronic properties, Sep. Physical Review B. 82:10., Number 12 AbstractWebsite

We presented a detailed study of the oxidation functional groups (epoxide and hydroxyl) on graphene based on density-functional calculations. Effects of single functional groups and their various combinations on the electronic and structural properties are investigated. It is found that single functional groups can induce interesting electronic bound states in graphene. Detailed energetics analysis shows that epoxy and hydroxyl groups tend to aggregate on the graphene plane. Investigations of possible ordered structures with different compositions of epoxy and hydroxyl groups show that the hydroxyl groups could form chainlike structures stabilized by the hydrogen bonding between these groups, in close proximity of the epoxy groups. Our calculations indicate that the energy gap of graphene oxide can be tuned in a large range of 0-4.0 eV, suggesting that functionalization of graphene by oxidation will significantly alter the electronic properties of graphene.

Zhang, F, Wang Y, Chou MY.  2010.  Theoretical investigation of intermediate phases between Li(2)NH and LiNH(2), Sep. Physical Review B. 82:6., Number 9 AbstractWebsite

Lithium imide (Li2NH) has been considered as a promising medium for hydrogen storage with the following reaction: LiNH(2)+LiH <-> Li(2)NH+H(2). All possible phases involved in the reaction need to be fully characterized in order to understand the right pathway connecting the two end compounds LiNH(2) and Li(2)NH and to further improve its reaction condition to meet the requirements of practical applications. We study from first-principles calculations the possible intermediate compounds Li(2-x)NH(1+x) between Li(2)NH and LiNH(2). Based on the energetics results, possible intermediate phases are identified for 0

Lee, CM, Lee RCH, Ruan WY, Chou MY.  2010.  Low-lying spectra of massless Dirac electron in magnetic dot and ring, May. Applied Physics Letters. 96:3., Number 21 AbstractWebsite

Both the size and the magnetic-field dependences of low-lying spectra of two-dimensional (2D) graphene based magnetic dot and ring in perpendicular inhomogeneous magnetic fields, where the magnetic field is zero inside the dot and ring, and constant elsewhere, are studied by the massless Dirac-Weyl equation. Numerical results obtained from direct diagonalization with 2D harmonic basis show that, under nonuniform magnetic fields, the higher Landau levels (N >= 1) for such massless Dirac electron interacting system in general become nondegenerate and split into discrete angular momentum states with level crossings with the lowest one (N=0) being an exception. (C) 2010 American Institute of Physics. [doi:10.1063/1.3435478]

Kim, J, Qin SY, Yao W, Niu Q, Chou MY, Shih CK.  2010.  Quantum size effects on the work function of metallic thin film nanostructures, Jul. Proceedings of the National Academy of Sciences of the United States of America. 107:12761-12765., Number 29 AbstractWebsite

In this paper, we present the direct observation of quantum size effects (QSE) on the work function in ultrathin Pb films. By using scanning tunneling microscopy and spectroscopy, we show that the very existence of quantum well states (QWS) in these ultrathin films profoundly affects the measured tunneling decay constant kappa, resulting in a very rich phenomenon of "quantum oscillations" in kappa as a function of thickness, L, and bias voltage, V(s). More specifically, we find that the phase of the quantum oscillations in kappa vs. L depends sensitively upon the bias voltage, which often results in a total phase reversal at different biases. On the other hand, at very low sample bias (vertical bar V(s)vertical bar < 0.03 V) the measurement of kappa vs. L accurately reflects the quantum size effect on the work function. In particular, the minima in the quantum oscillations of kappa vs. L occur at the locations where QWS cross the Fermi energy, thus directly unraveling the QSE on the work function in ultrathin films, which was predicted more than three decades ago. This further clarifies several contradictions regarding the relationship between the QWS locations and the work function.

Barraza-Lopez, S, Vanevic M, Kindermann M, Chou MY.  2010.  Effects of Metallic Contacts on Electron Transport through Graphene, Feb. Physical Review Letters. 104:4., Number 7 AbstractWebsite

We report on a first-principles study of the conductance through graphene suspended between Al contacts as a function of junction length, width, and orientation. The charge transfer at the leads and into the freestanding section gives rise to an electron-hole asymmetry in the conductance and in sufficiently long junctions induces two conductance minima at the energies of the Dirac points for suspended and clamped regions, respectively. We obtain the potential profile along a junction caused by doping and provide parameters for effective model calculations of the junction conductance with weakly interacting metallic leads.

Chu, JF, Chang TC, Li HW.  2010.  Single-Molecule TPM Studies on the Conversion of Human Telomeric DNA, Apr 21. Biophysical Journal. 98:1608-1616., Number 8 AbstractWebsite

Human telomere contains guanine-rich (G-rich) tandem repeats of single-stranded DNA sequences at its 3' tail. The G-rich sequences can be folded into various secondary structures, termed G-quadruplexes (G4s), by Hoogsteen basepairing in the presence of monovalent cations (such as Na(+) and K(+)). We developed a single-molecule tethered particle motion (TPM) method to investigate the unfolding process of G4s in the human telomeric sequence AGGG(TTAGGG)3 in real time. The TPM method monitors the DNA tether length change caused by formation of the G4, thus allowing the unfolding process and structural conversion to be monitored at the single-molecule level. In the presence of its antisense sequence, the folded G4 structure can be disrupted and converted to the unfolded conformation, with apparent unfolding time constants of 82 s and 3152 s. We also observed that the stability of the G4 is greatly affected by different monovalent cations. The folding equilibrium constant of G4 is strongly dependent on the salt concentration, ranging from 1.75 at 5 mM Na(+) to 3.40 at 15 mM Na(+). Earlier spectral studies of Na(+)- and K(+)-folded states suggested that the spectral conversion between these two different folded structures may go through a structurally unfolded intermediate state. However, our single-molecule TPM experiments did not detect any totally unfolded intermediate within our experimental resolution when sodium-folded G4 DNA molecules were titrated with high-concentration, excess potassium ions. This observation suggests that a totally unfolding pathway is likely not the major pathway for spectral conversion on the timescale of minutes, and that interconversion among folded states can be achieved by the loop rearrangement. This study also demonstrates that TPM experiments can be used to study conformational changes in single-stranded DNA molecules.

Wu, CT, Chen CW, Hu MS, Chen KH, Chen LC, Chu MW, Chen CH.  2010.  Anisotropic surface plasmon excitation in Au/silica nanowire. Appl. Phys. Lett.. 96:236106.
Chouhan, N, Yeh CL, Hu SF, Huang JH, Tsai CW, Liu RS, Chang WS, Chen KH.  2010.  Array of CdSe QD-sensitized ZnO nanorods serves as photoanode for water splitting. J. Electrochem. Soc.. 157:1430-1433.
Ho, YK, Chakraborty S.  2010.  Autoionization resonance states of two-electron atomic systems with finite spherical confinement. Bulletin of the American Physical Society. 55: APS Abstract2010_2.pdf

n/a

Das, CR, Hsu HC, Dhara S, Bhaduri AK, Raj B, Chen LC, Chen KH, Albert SK, Ray A, Tzeng Y.  2010.  A complete Raman mapping of phase transitions in Si under indentation. J. Raman Spectroscopy. 41:334.
Dhara, S, Chang CW, Tsai HM, Chen* LC, Chen KH.  2010.  Direct observation of amophization in load rate dependent nanoindentation studies of crystalline Si. Appl. Phys. Lett.. 96:253113.
Lai, YT, Ganguly A, Chen CP, Chen KH, Chen* LC.  2010.  Direct voltammetric sensing of L-cysteine atpristine GaN nanowires electrode. Biosensors and Bioelectronics. 26:1688-1691.
Huang, BR, Jou S, Wu YM, Chen KH, Chen LC.  2010.  Effect of XeF laser treatment on structure of nanocrystalline diamond films. Diamond & Relat. Mater.. 19:445.