Oxidation functional groups on graphene: Structural and electronic properties

Citation:
Yan, JA, Chou MY.  2010.  Oxidation functional groups on graphene: Structural and electronic properties, Sep. Physical Review B. 82:10., Number 12

Abstract:

We presented a detailed study of the oxidation functional groups (epoxide and hydroxyl) on graphene based on density-functional calculations. Effects of single functional groups and their various combinations on the electronic and structural properties are investigated. It is found that single functional groups can induce interesting electronic bound states in graphene. Detailed energetics analysis shows that epoxy and hydroxyl groups tend to aggregate on the graphene plane. Investigations of possible ordered structures with different compositions of epoxy and hydroxyl groups show that the hydroxyl groups could form chainlike structures stabilized by the hydrogen bonding between these groups, in close proximity of the epoxy groups. Our calculations indicate that the energy gap of graphene oxide can be tuned in a large range of 0-4.0 eV, suggesting that functionalization of graphene by oxidation will significantly alter the electronic properties of graphene.

Notes:

ISI Document Delivery No.: 645SMTimes Cited: 5Cited Reference Count: 50Cited References: Xiang HJ, 2010, PHYS REV B, V82 Xu ZP, 2010, NANOTECHNOLOGY, V21 Eda G, 2009, J PHYS CHEM C, V113, P15768 Yan JA, 2009, PHYS REV LETT, V103 Li ZY, 2009, J AM CHEM SOC, V131, P6320 Guisinger NP, 2009, NANO LETT, V9, P1462 Luo ZT, 2009, APPL PHYS LETT, V94 Lahaye RJWE, 2009, PHYS REV B, V79 Mkhoyan KA, 2009, NANO LETT, V9, P1058 Elias DC, 2009, SCIENCE, V323, P610 Luo ZT, 2009, J AM CHEM SOC, V131, P898 Jung I, 2008, NANO LETT, V8, P4283, DOI 10.1021/nl8019938 Cai WW, 2008, SCIENCE, V321, P1815, DOI 10.1126/science.1162369 Boukhvalov DW, 2008, J AM CHEM SOC, V130, P10697, DOI 10.1021/ja8021686 Wu XS, 2008, PHYS REV LETT, V101 Eda G, 2008, NAT NANOTECHNOL, V3, P270, DOI 10.1038/nnano.2008.83 Pandey D, 2008, SURF SCI, V602, P1607, DOI 10.1016/j.susc.2008.02.025 Li D, 2008, NAT NANOTECHNOL, V3, P101, DOI 10.1038/nnano.2007.451 Boukhvalov DW, 2008, PHYS REV B, V77 Kudin KN, 2008, NANO LETT, V8, P36, DOI 10.1021/nl071822y Paci JT, 2007, J PHYS CHEM C, V111, P18099, DOI 10.1021/jp075799g Gilje S, 2007, NANO LETT, V7, P3394, DOI 10.1021/nl0717715 Gomez-Navarro C, 2007, NANO LETT, V7, P3499, DOI 10.1021/nl072090c Dikin DA, 2007, NATURE, V448, P457, DOI 10.1038/nature06016 Rutter GM, 2007, SCIENCE, V317, P219, DOI 10.1126/science.1142882 Stankovich S, 2007, CARBON, V45, P1558, DOI 10.1016/j.carbon.2007.02.034 Sofo JO, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.153401 Wehling TO, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.125425 Buchsteiner A, 2006, J PHYS CHEM B, V110, P22328, DOI 10.1021/jp0641132 Li JL, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.176101 Schniepp HC, 2006, J PHYS CHEM B, V110, P8535, DOI 10.1021/jp060936f Ruffieux P, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.153403 Baroni S, 2001, REV MOD PHYS, V73, P515, DOI 10.1103/RevModPhys.73.515 Kelly KF, 2000, P NATL ACAD SCI USA, V97, P10318, DOI 10.1073/pnas.190325397 Ruffieux P, 2000, PHYS REV LETT, V84, P4910, DOI 10.1103/PhysRevLett.84.4910 Bengtsson L, 1999, PHYS REV B, V59, P12301, DOI 10.1103/PhysRevB.59.12301 Lerf A, 1998, J PHYS CHEM B, V102, P4477, DOI 10.1021/jp9731821 He HY, 1998, CHEM PHYS LETT, V287, P53, DOI 10.1016/S0009-2614(98)00144-4 NAKAJIMA T, 1994, CARBON, V32, P469, DOI 10.1016/0008-6223(94)90168-6 KRESSE G, 1993, PHYS REV B, V47, P558, DOI 10.1103/PhysRevB.47.558 MERMOUX M, 1991, CARBON, V29, P469, DOI 10.1016/0008-6223(91)90216-6 VANDERBILT D, 1990, PHYS REV B, V41, P7892, DOI 10.1103/PhysRevB.41.7892 CAREY FA, 1990, ADV ORGANIC CHEM MIZES HA, 1989, SCIENCE, V244, P559, DOI 10.1126/science.244.4904.559 NAKAJIMA T, 1988, CARBON, V26, P357, DOI 10.1016/0008-6223(88)90227-8 MONKHORST HJ, 1976, PHYS REV B, V13, P5188, DOI 10.1103/PhysRevB.13.5188 CLAUSS A, 1957, Z ANORG ALLG CHEM, V291, P205, DOI 10.1002/zaac.19572910502 RUESS G, 1945, KOLLOID Z Z POLYM, V110, P17 ECHTERMEYER TJ, ARXIV07122026 TRAMBLY G, COMMUNICATIONYan, Jia-An Chou, M. Y.Department of Energy[DE-FG02-97ER45632]; National Science Foundation[DMR-08-20382]; Office of Science of the U.S. Department of Energy[DE-AC02-05CH11231]We thank P.N. First and W.Y. Ruan for discussions and S. Barraza-Lopez for the assistance with some plots. This work is supported by the Department of Energy (Grant No. DE-FG02-97ER45632). We acknowledge interaction with the Georgia Tech MRSEC funded by National Science Foundation (Grant No. DMR-08-20382). This research used computational resources at the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and the National Science Foundation TeraGrid resources provided by the Texas Advanced Computing Center (TACC).AMER PHYSICAL SOCCOLLEGE PK

Website