Effects of Metallic Contacts on Electron Transport through Graphene

Citation:
Barraza-Lopez, S, Vanevic M, Kindermann M, Chou MY.  2010.  Effects of Metallic Contacts on Electron Transport through Graphene, Feb. Physical Review Letters. 104:4., Number 7

Abstract:

We report on a first-principles study of the conductance through graphene suspended between Al contacts as a function of junction length, width, and orientation. The charge transfer at the leads and into the freestanding section gives rise to an electron-hole asymmetry in the conductance and in sufficiently long junctions induces two conductance minima at the energies of the Dirac points for suspended and clamped regions, respectively. We obtain the potential profile along a junction caused by doping and provide parameters for effective model calculations of the junction conductance with weakly interacting metallic leads.

Notes:

ISI Document Delivery No.: 557JDTimes Cited: 23Cited Reference Count: 33Cited References: Blake P, 2009, SOLID STATE COMMUN, V149, P1068 Geim AK, 2009, SCIENCE, V324, P1530 Farmer DB, 2009, APPL PHYS LETT, V94 Khomyakov PA, 2009, PHYS REV B, V79 Ran QS, 2009, APPL PHYS LETT, V94 Golizadeh-Mojarad R, 2009, PHYS REV B, V79 Castro Neto AH, 2009, REV MOD PHYS, V81, P109 Farmer DB, 2009, NANO LETT, V9, P388 Huard B, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.121402 Lee EJH, 2008, NAT NANOTECHNOL, V3, P486, DOI 10.1038/nnano.2008.172 Giovannetti G, 2008, PHYS REV LETT, V101 Danneau R, 2008, PHYS REV LETT, V100 Nemec N, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.125420 Martin J, 2008, NAT PHYS, V4, P144, DOI 10.1038/nphys781 WANG X, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.206803 Ozyilmaz B, 2007, PHYS REV LETT, V99 Avouris P, 2007, NAT NANOTECHNOL, V2, P605, DOI 10.1038/nnano.2007.300 Blanter YM, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.155433 Robinson JP, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.115430 Williams JR, 2007, SCIENCE, V317, P638, DOI 10.1126/science.1144657 Huard B, 2007, PHYS REV LETT, V98 Han MY, 2007, PHYS REV LETT, V98 Heersche HB, 2007, NATURE, V446, P56, DOI 10.1038/nature05555 Tworzydlo J, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.246802 Berger C, 2006, SCIENCE, V312, P1191, DOI 10.1126/science.1125925 Rocha AR, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.085414 Rocha AR, 2005, NAT MATER, V4, P335, DOI 10.1038/nmat1349 Berger C, 2004, J PHYS CHEM B, V108, P19912, DOI 10.1021/jp040650f Novoselov KS, 2004, SCIENCE, V306, P666, DOI 10.1126/science.1102896 Soler JM, 2002, J PHYS-CONDENS MAT, V14, P2745, DOI 10.1088/0953-8984/14/11/302 Junquera J, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.235111 TROULLIER N, 1993, PHYS REV B, V43, P1991 PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048Barraza-Lopez, Salvador Vanevic, Mihajlo Kindermann, Markus Chou, M. Y.Department of Energy[DE-FG02-97ER45632]; National Science Foundation[DMR-02-05328]; NCSA[TG-PHY090002]; NERSCWe thank L. Xian, K. Park, and E. Yepez for helpful discussions. This work is supported by the Department of Energy (Grant No. DE-FG02-97ER45632). We acknowledge interaction with the Georgia Tech MRSEC funded by the National Science Foundation (Grant No. DMR-02-05328) and computer support from Teragrid at NCSA (TG-PHY090002, Cobalt supercomputer) and NERSC.AMER PHYSICAL SOCCOLLEGE PK

Website