Charge Transport through Graphene Junctions with Wetting Metal Leads

Citation:
Barraza-Lopez, S, Kindermann M, Chou MY.  2012.  Charge Transport through Graphene Junctions with Wetting Metal Leads, Jul. Nano Letters. 12:3424-3430., Number 7

Abstract:

Graphene is believed to be an excellent candidate material for next-generation electronic devices. However, one needs to take into account the nontrivial effect of metal contacts in order to precisely control the charge injection and extraction processes. We have performed transport calculations for graphene junctions with wetting metal leads (metal leads that bind covalently to graphene) using nonequilibrium Green's functions and density functional theory. Quantitative information is provided on the increased resistance with respect to ideal contacts and on the statistics of current fluctuations. We find that charge transport through the studied two-terminal graphene junction with Ti contacts is pseudo-diffusive up to surprisingly high energies.

Notes:

ISI Document Delivery No.: 972QYTimes Cited: 0Cited Reference Count: 37Cited References: Artacho E, 2008, J PHYS-CONDENS MAT, V20, DOI 10.1088/0953-8984/20/6/064208 Barraza-Lopez S, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.076807 Beenakker C, 2003, PHYS TODAY, V56, P37, DOI 10.1063/1.1583532 Blake P, 2009, SOLID STATE COMMUN, V149, P1068, DOI 10.1016/j.ssc.2009.02.039 Cayssol J, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.075428 Danneau R, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.196802 Darancet P, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.136803 DiCarlo L, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.156801 Do VN, 2010, J PHYS-CONDENS MAT, V22, DOI 10.1088/0953-8984/22/42/425301 Du X, 2008, NAT NANOTECHNOL, V3, P491, DOI 10.1038/nnano.2008.199 Giovannetti G, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.026803 Golizadeh-Mojarad R, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.085410 Han MY, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.206805 Hannes WR, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.045414 Heersche HB, 2007, NATURE, V446, P56, DOI 10.1038/nature05555 Huard B, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.121402 Jiao LY, 2010, NAT NANOTECHNOL, V5, P321, DOI [10.1038/nnano.2010.54, 10.1038/NNANO.2010.54] Khomyakov P., 2009, PHYS REV B, V79 Khomyakov PA, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.115437 Lee EJH, 2008, NAT NANOTECHNOL, V3, P486, DOI 10.1038/nnano.2008.172 Leonard F, 2011, NAT NANOTECHNOL, V6, P773, DOI [10.1038/nnano.2011.196, 10.1038/NNANO.2011.196] Malec CE, 2011, J APPL PHYS, V109, DOI 10.1063/1.3554480 Nagashio K, 2010, APPL PHYS LETT, V97, DOI 10.1063/1.3491804 NAZAROV YV, 1994, PHYS REV LETT, V73, P134, DOI 10.1103/PhysRevLett.73.134 Nouchi R, 2010, APPL PHYS LETT, V96, DOI 10.1063/1.3456383 Novoselov KS, 2004, SCIENCE, V306, P666, DOI 10.1126/science.1102896 Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865 Robinson JA, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3549183 Rocha AR, 2005, NAT MATER, V4, P335, DOI 10.1038/nmat1349 Saito R, 2000, PHYS REV B, V61, P2981, DOI 10.1103/PhysRevB.61.2981 Stadler R, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.161405 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 Tworzydlo J, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.246802 Varykhalov A, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.121101 Venugopal A, 2010, APPL PHYS LETT, V96, DOI 10.1063/1.3290248 Xia FN, 2011, NAT NANOTECHNOL, V6, P179, DOI [10.1038/nnano.2011.6, 10.1038/NNANO.2011.6] Zhang YB, 2005, NATURE, V438, P201, DOI 10.1038/nature04235Barraza-Lopez, Salvador Kindermann, Markus Chou, M. Y.Chou, Mei-Yin/D-3898-2012U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DEFG02-97ER45632]; National Science Foundation [DMR-10-55799, DMR-08-20382]; Georgia Tech MRSECWe thank L. Xian, P. Thibado, K. Park, and M. Kuroda for helpful discussions. S.B.-L. and M.Y.C. acknowledge the support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DEFG02-97ER45632. M.K. is supported by the National Science Foundation (DMR-10-55799). We thank the support within the Georgia Tech MRSEC, funded by the National Science Foundation (DMR-08-20382), and computer support from Teragrid (TG-PHY090002, NCSA's Ember and PSC's Blacklight).Amer chemical socWashington

Website