Publications

User warning: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ')) ORDER BY timestamp DESC' at line 1 query: SELECT timestamp FROM views_content_cache WHERE (()) ORDER BY timestamp DESC in _db_query() (line 169 of /var/www/html/iams/project/includes/database.mysqli.inc).
Export 1106 results:
Sort by: Author Title Type [ Year  (Desc)]
2014
Chen, WH, Wang JJ, Du KJ, Yen HT, Liu SB, Wang I, Tsai* TC.  2014.  Pore Engineering of Zeolites and Their Perspective Applications in Aromatics Conversion. Current Organic Chemistry. 18(10):1323-1334.
Veerakumar, P, Madhu R, Chen* SM, Hung CT, Tang PH, Wang CB, Liu* SB.  2014.  Porous Carbon Modified Electrodes as Highly Selective and Sensitive Sensors for Detection of Dopamine. Analyst.
Liang, CK, Chang ST, Verkhoturov SV, Chen LC, Chen KH, Schweikert* EA.  2014.  SIMS methodology for probing the fate and dispersion of catalytically active molecules. Intl. J. Mass Spectrometry . 370:107-113.
Dimitry, DV, Bondarenko LV, Matetskiy AV, Yakovlev AA, Tupchaya AY, Eremeev SV, Chulkov EV, Chou JP, Wei CM, Lai MY, Wang YL, Zotov AV, Saranin AA.  2014.  A Strategy to Create Spin-Split Metallic Bands on Silicon Using a Dense Alloy Layer. SCIENTIFIC REPORTS. 4:5. Abstract

n/a

Wei, PC, Chen KH, Chen LC.  2014.  Surface diffusion controlled formation of high quality vertically aligned InN nanotubes. J. Appl. Phys.. 116:124301.
Mica C. Smith, Wei-Lun Ting, Chun-Hung Chang, Takahashi K, Kristie A. Boering, Lin JJ-M.  2014.  UV Absorption Spectrum of the C2 Criegee Intermediate CH3CHOO. Journal of Chemical Physics. 141:,074302.
Hui, Y-Y, Su L-J, Chen OY, Chen Y-T, Liu T-M, Chang* H-C.  2014.  Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating. Scientific Reports. 4:5574.
Kasai, T, Che D-C, Okada M, Tsai P-Y, Lin K-C, Palazzetti F, Aquilanti V.  2014.  Directions of chemical change: Experimental characterization of the stereodynamics of photodissociation and reactive processes. Physical Chemistry Chemical Physics. 16:9776-9790., Number 21 AbstractWebsite

This perspective article aims at accounting for the versatility of some current experimental investigations for exploring novel paths in chemical reactions. It updates a previous one [Phys. Chem. Chem. Phys., 2005, 5, 291] and is limited to work by the authors. The use of advanced molecular beam techniques together with a combination of modern tools for specific preparation, selection and detection permits us to discover new trends in reactivity in the gas phase as well as at interfaces. We specifically discuss new facets of stereodynamics, namely the effects of molecular orientation and alignment on reactive and photodissociation processes. Further topics involve roaming paths and triple fragmentation in photodissociation probed by imaging techniques, chirality effects in collisions and deviations from Arrhenius behavior in the temperature dependence of chemical reactions. © the Partner Organisations 2014.

Weng, SC, Xu RQ, Said AH, Leu BM, Ding Y, Hong H, Fang XY, Chou MY, Bosak A, Abbamonte P, Cooper SL, Fradkin E, Chang SL, Chiang TC.  2014.  Pressure-induced antiferrodistortive phase transition in SrTiO3: Common scaling of soft-mode with pressure and temperature. Epl. 107:5. AbstractWebsite
n/a
Tsai, P-Y, Chao M-H, Kasai T, Lin K-C, Lombardi A, Palazzetti F, Aquilanti V.  2014.  Roads leading to roam. Role of triple fragmentation and of conical intersections in photochemical reactions: Experiments and theory on methyl formate. Physical Chemistry Chemical Physics. 16:2854-2865., Number 7 AbstractWebsite

The exploration of alternative roads that open to molecules with sufficient energy to yield different products permits prediction and eventually control of the outcomes of chemical reactions. Advanced imaging techniques for monitoring laser-induced photodissociation are here combined with dynamical simulations, involving ample sets of classical trajectories generated on a quantum chemical potential energy surface. Methyl formate, HCOOCH3, is photodissociated at energies near the triple fragmentation threshold into H, CO and OCH3. Images of velocity and rotational distributions of CO exhibit signatures of alternative routes, such as those recently designated as transition-state vs. roaming-mediated. Furthermore, a demonstration of the triple fragmentation route is given, and also confirmed by H-atom product imaging and FTIR time-resolved spectra of the intermediate HCO radical. In addition, the relevance of nonadiabatic transitions promoted by a conical intersection is clarified by simulations as the privileged "reactivity funnel" of organic photochemistry, whereby the outcomes of molecular photoexcitation are delivered to electronic ground states. This journal is © the Owner Societies 2014.

Zhang, F, Wood BC, Wang Y, Wang CZ, Ho KM, Chou MY.  2014.  Ultrafast Bulk Diffusion of AlHx in High-Entropy Dehydrogenation Intermediates of NaAlH4. Journal of Physical Chemistry C. 118:18356-18361. AbstractWebsite
n/a
Zhang, WJ, Chuu CP, Huang JK, Chen CH, Tsai ML, Chang YH, Liang CT, Chen YZ, Chueh YL, He JH, Chou MY, Li LJ.  2014.  Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Scientific Reports. 4:8. AbstractWebsite
n/a
Hsing, CR, Cheng C, Chou JP, Chang CM, Wei CM.  2014.  Van der Waals interaction in a boron nitride bilayer. NEW JOURNAL OF PHYSICS. 16:9. Abstract
n/a
2013
Matetskiy, AV, Bondarenko LV, Gruznev DV, Zotov AV, Saranin AA, Chou JP, Hsing CR, Wei CM, Wang YL.  2013.  Peculiar diffusion of C-60 on In-adsorbed Si(111)root 3 x root 3-Au surface, {OCT}. SURFACE SCIENCE. 616:44-50. Abstract

n/a

Gruznev, DV, Matetskiy AV, Bondarenko LV, Utas OA, Zotov AV, Saranin AA, Chou JP, Wei CM, Lai MY, Wang YL.  2013.  Stepwise self-assembly of C-60 mediated by atomic scale moiré magnifiers, {APR}. NATURE COMMUNICATIONS. 4:1679. Abstract

Self-assembly of atoms or molecules on a crystal surface is considered one of the most promising methods to create molecular devices. Here we report a stepwise self-assembly of C60 molecules into islands with unusual shapes and preferred sizes on a gold–indium-covered Si(111) surface. Specifically, 19-mer islands prefer a non-compact boomerang shape, whereas hexagonal 37-mer islands exhibit extraordinarily enhanced stability and abundance. The stepwise self-assembly is mediated by the moiré interference between an island with its underlying lattice, which essentially maps out the adsorption-energy landscape of a C60 on different positions of the surface with a lateral magnification factor and dictates the probability for the subsequent attachment of C60 to an island’s periphery. Our discovery suggests a new method for exploiting the moiré interference to dynamically assist the self-assembly of particles and provides an unexplored tactic of engineering atomic scale moiré magnifiers to facilitate the growth of monodispersed mesoscopic structures.

Lee, CM, Lee RCH, Ruan WY, Chou MY, Vyas A.  2013.  Magnetic-field dependence of low-lying spectra in bilayer graphene-based magnetic dots and rings, Mar. Solid State Communications. 156:49-53. AbstractWebsite

The low-lying energy spectra of bilayer graphene in a perpendicular magnetic field B(r)(z) over cap were obtained by numerical diagonalization of the Hamiltonian. We assumed that B(r) takes on the shape of a circular dot or a ring. Under such a nonuniform field, the lowest-energy Landau levels, with N- = 0,1, remain invariant with a zero eigenvalue. For other Landau levels, complicated level-splitting and level-crossings take place when the effective radius of the dot or ring increases. (C) 2012 Elsevier Ltd. All rights reserved.

Wei, PC, Wang ZF, Lo WT, Su MI, Shew JY, Chang TC, Lee WH.  2013.  A cis-element with mixed G-quadruplex structure of NPGPx promoter is essential for nucleolin-mediated transactivation on non-targeting siRNA stress, Feb. Nucleic Acids Research. 41:1533-1543., Number 3 AbstractWebsite

We reported that non-targeting siRNA (NT-siRNA) stress induces non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx) expression to cooperate with exoribonuclease XRN2 for releasing the stress [Wei,P.C., Lo,W.T., Su,M.I., Shew,J.Y. and Lee, W. H. (2011) Non-targeting siRNA induces NPGPx expression to cooperate with exoribonuclease XRN2 for releasing the stress. Nucleic Acids Res., 40, 323-332]. However, how NT-siRNA stress inducing NPGPx expression remains elusive. In this communication, we showed that the proximal promoter of NPGPx contained a mixed G-quadruplex (G4) structure, and disrupting the structure diminished NT-siRNA induced NPGPx promoter activity. We also demonstrated that nucleolin (NCL) specifically bonded to the G4-containing sequences to replace the originally bound Sp1 at the NPGPx promoter on NT-siRNA stress. Consistently, overexpression of NCL further increased NPGPx promoter activity, whereas depletion of NCL desensitized NPGPx promoter to NT-siRNA stress. These results suggest that the cis-element with mixed G4 structure at the NPGPx promoter plays an essential role for its transactivation mediated by NCL to release cells from NT-siRNA stress.

Chen, YH, Lee MJ, Wang IC, Du SW, Chen YF, Chen YC, Yu IA.  2013.  Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay, Feb. Physical Review Letters. 110:5., Number 8 AbstractWebsite

A high-storage efficiency and long-lived quantum memory for photons is an essential component in long-distance quantum communication and optical quantum computation. Here, we report a 78% storage efficiency of light pulses in a cold atomic medium based on the effect of electromagnetically induced transparency. At 50% storage efficiency, we obtain a fractional delay of 74, which is the best up-to-date record. The classical fidelity of the recalled pulse is better than 90% and nearly independent of the storage time, as confirmed by the direct measurement of phase evolution of the output light pulse with a beat-note interferometer. Such excellent phase coherence between the stored and recalled light pulses suggests that the current result may be readily applied to single photon wave packets. Our work significantly advances the technology of electromagnetically induced transparency-based optical memory and may find practical applications in long-distance quantum communication and optical quantum computation. DOI: 10.1103/PhysRevLett.110.083601

Zhuo, KN, Chou MY.  2013.  Surface passivation and orientation dependence in the electronic properties of silicon nanowires, Apr. Journal of Physics-Condensed Matter. 25:11., Number 14 AbstractWebsite

Various surface passivations for silicon nanowires have previously been investigated to extend their stability and utility. However, the fundamental mechanisms by which such passivations alter the electronic properties of silicon nanowires have not been clearly understood thus far. In this work, we address this issue through first-principles calculations on fluorine, methyl and hydrogen passivated [110] and [111] silicon nanowires. Comparing these results, we explain how passivations may alter the electronic structure through quantum confinement and strain and demonstrate how silicon nanowires may be modelled by an infinite circular quantum well. We also discuss why [110] nanowires are more strongly influenced by their surface passivation than [111] nanowires.

Hsieh, M-C, Chien C-H, Chang C-C, Chan T-C.  2013.  Aggregation induced photodynamic therapy enhancement based on linear and nonlinear excited FRET of fluorescent organic nanoparticles. Journal of Materials Chemistry B,. 1:2350-2357. AbstractWebsite

A binary molecule can self-assemble to form fluorescent organic nanoparticles (FONs) based on the Aggregation-Induced Emission Enhancement (AIEE) property and subsequently, presents an efficient fluorescence resonance energy transfer (FRET) to generate singlet oxygen under linear and nonlinear light sources. Biologically, this FON-photosensitizer is much more phototoxic to cancer cells than to normal cells without significant dark toxicity. Eventually, a new approach, called FON FRET-PDT or AIEE FRET-PDT, to promote the PDT effect is expected.

Chen, RS, Wang WC, Chan CH, Lu ML, Chen YF, Lin HC, Chen KH, Chen LC.  2013.  Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires. Nanoscale. 5:6867-6873.
Liu, SW, Chu JF, Tsai CT, Fang HC, Chang TC, Li HW.  2013.  Assaying the binding strength of G-quadruplex ligands using single-molecule TPM experiments. Anal Biochem. 436(2):101-8. AbstractWebsite

G-quadruplexes are stable secondary structures formed by Hoogsteen base pairing of guanine-rich single-stranded DNA sequences in the presence of monovalent cations (Na(+) or K(+)). Folded G-quadruplex (G4) structures in human telomeres have been proposed as a potential target for cancer therapy. In this study, we used single-molecule tethered particle motion (TPM) experiments to assay the binding strength of possible G4 ligands. We found that individual single-stranded DNA molecules containing the human telomeric sequence d[AGGG(TTAGGG)3] fluctuated between the folded and the unfolded states in a 10 mM Na(+) solution at 37 °C. The durations of folded and unfolded states were single-exponentially distributed, and in return the folding and unfolding rate constants were 1.68 ± 0.01 and 1.63 ± 0.03 (s(-1)), respectively. In the presence of G4 ligands, such as TMPyP4, DODCI, BMVC, and BMVPA, the unfolding rate constant decreased appreciably. In addition, combining the Cu(2+)-induced G4 unfolding and TPM assay, we showed that BMVC and TMPyP4 are better G4 stabilizers than DODCI. The capability of monitoring the fluctuation between the folded and the unfolded state of G4 DNA in real time allows the determination of both kinetic and thermodynamic parameters in a single measurement and offers a simple way to assay binding strength under various conditions.

Liu, YL, Hsu CW, Dhara S, Chang CW, Tsai HM, Chen LC, Chen KH, Pong* WF, Chi GC.  2013.  Atomistic nucleation sites of Pt nanoparticles on N-doped carbon nanotubes. Nanoscale. 5:6812-6818.
WW, C, CH C, CL W, HH W, YL W, ST D, TS L, TC C.  2013.  Automated quantitative analysis of lipid accumulation and hydrolysis in living macrophages with label-free imaging.. Analytical and bioanalytical chemistry. AbstractWebsite

The accumulation of lipids in macrophages is a key factor that promotes the formation of atherosclerotic lesions. Several methods such as biochemical assays and neutral lipid staining have been used for the detection of lipids in cells. However, a method for real-time quantitative assessment of the lipid content in living macrophages has yet to be shown, particularly for its kinetic process with drugs, due to the lack of suitable tools for non-invasive chemical detection. Here we demonstrate label-free real-time monitoring of lipid droplets (LDs) in living macrophages by using coherent anti-Stokes Raman scattering (CARS) microscopy. In addition, we have established an automated image analysis method based on maximum entropy thresholding (MET) to quantify the cellular lipid content. The result of CARS image analysis shows a good correlation (R 2 > 0.9) with the measurement of biochemical assay. Using this method, we monitored the processes of lipid accumulation and hydrolysis in macrophages. We further characterized the effect of a lipid hydrolysis inhibitor (diethylumbelliferyl phosphate, DEUP) and determined the kinetic parameters such as the inhibition constant, K i. Our work demonstrates that the automated quantitative analysis method is useful for the studies of cellular lipid metabolism and has potential for preclinical high-throughput screening of therapeutic agents related to atherosclerosis and lipid-associated disorders.

Chang, CK, Kataria S, Kuo CC, Ganguli A, Wang BY, Hwang JY, Huang KJ, Yang WH, Wang SB, Chuang CH, Chen M, Huang CI, Pong WF, Song KJ, Chang SJ, Guo J, Tai Y, Tsujimoto M, Isoda S, Chen CW, Chen LC, Chen KH.  2013.  Band gap engineering of chemical vapor deposited graphene by in-situ BN doping. ACS Nano. 7:1333-1341.