Lin, K-C, Nakamura M, Yang, S. J, Kasai T, Che D-C, Lombardi A, Palazzetti F, Aquilanti V.
2017.
Angular distribution of bromine atomic photofragment in oriented 2-bromobutane via hexapole state selector. AIP Conference Proceedings. 1906
AbstractIn this work, an asymmetric top molecule 2-bromobutane has been successfully oriented by using hexapole state selector combined with orientation field, followed by detection of the bromine atomic photofragment distribution in the photolysis. The photofragment is produced in both the ground Br (2P3/2) and the excited Br (2P1/2) electronic states and both channels are studied by the slice imaging technique, revealing new features in the stereodynamic vectorial properties with respect to previous investigations on non-oriented molecules. © 2017 Author(s).
Huang, T-K, Chen B-J, Lin K-C, Lin L, Sun B-J, Chang AHH.
2017.
Cl2 Elimination in 248 nm Photolysis of (COCl)2 Probed with Cavity Ring-Down Absorption Spectroscopy. Journal of Physical Chemistry A. 121:2888-2895., Number 15
AbstractCavity ring-down absorption spectroscopy (CRDS) is employed to investigate one-photon dissociation of (COCl)2 at 248 nm obtaining a primary Cl2 elimination channel. A ratio of vibrational population is estimated to be 1:(0.12 ± 0.03):(0.011 ± 0.003) for the v = 0, 1, and 2 levels. The quantum yield of Cl2 molecular channel is obtained to be 0.8 ± 0.4 initiated from the X̃ 1Ag ground state surface (COCl)2 via internal conversion. The obtained total quantum yield is attributed to both primary ((COCl)2 + hν → 2CO + Cl2) and secondary reactions (dominated by Cl + COCl → Cl2 + CO). The former is estimated to share a yield of >0.14, while the latter contributes up to 0.66. The photodissociation pathway to the molecular products is calculated to proceed via a four-center transition state (TS) from which Cl2 is eliminated synchronously. Installation of the mirrors with reflectivity of 99.995% in the CRDS apparatus prolongs the ring-down time to 70 μs, thus allowing for the contribution from 17% up to 66% of the total Cl2 yield from secondary reaction depending on the reaction temperature. Despite uncertainty in determining the product yield, the primary Cl2 dissociation channel eliminated from (COCl)2 is observed for the first time. © 2017 American Chemical Society.
Nakamura, M, Yang, S. J, Lin K-C, Kasai T, Che D-C, Lombardi A, Palazzetti F, Aquilanti V.
2017.
Stereodirectional images of molecules oriented by a variable-voltage hexapolar field: Fragmentation channels of 2-bromobutane electronically excited at two photolysis wavelengths. Journal of Chemical Physics. 147, Number 1
AbstractThe asymmetric-top molecule 2-bromobutane is oriented by means of a hexapole state selector; the angular distribution of the bromine atom photofragment, for the two fine-structure components, is acquired by velocity-map ion imaging. The molecular beam, spatially oriented along the time-of-flight axis, is intersected with a linearly polarized laser, whose polarization is tilted by 45° with respect to the detector surface. To obtain the mixing ratio of the perpendicular and parallel transitions, the fragment ion images and angular distributions can be appropriately simulated to give insight on the population mechanism of the specific electronic state involved at each selected excitation wavelength. The photofragment images obtained at 238.6 nm yielded an asymmetry factor β1 of 0.67, indicative of the extent of molecular orientation, and an anisotropy parameter β2 of 1.03, which is a signature of a prevailing parallel transition along the C-Br axis. When the photolysis wavelength is tuned to 254.1 nm, the corresponding angular distribution is less asymmetric (β1 = 0.24) and the obtained small value β2 = 0.12 is a characteristic of a predominantly perpendicular transition. The photofragment angular distributions are also affected by hexapole voltage, especially regarding the asymmetry factor, and this aspect provides information on the effect of molecular orientation. © 2017 Author(s).
Nunna, R, Qiu P, Yin M, Chen H, Hanus R, Song Q, Zhang T, Chou M-Y, Agne MT, He J, Snyder JG, Shi X, Chen L.
2017.
Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs. Energy Environ. Sci.. 10:1928-1935.: The Royal Society of Chemistry
AbstractHere{,} by utilizing the special interaction between metal Cu and multi-walled carbon nanotubes (CNTs){,} we have successfully realized the in situ growth of Cu2Se on the surface of CNTs and then fabricated a series of Cu2Se/CNT hybrid materials. Due to the high degree of homogeneously dispersed molecular CNTs inside the Cu2Se matrix{,} a record-high thermoelectric figure of merit zT of 2.4 at 1000 K has been achieved.