Cl2 Elimination in 248 nm Photolysis of (COCl)2 Probed with Cavity Ring-Down Absorption Spectroscopy

Citation:
Huang, T-K, Chen B-J, Lin K-C, Lin L, Sun B-J, Chang AHH.  2017.  Cl2 Elimination in 248 nm Photolysis of (COCl)2 Probed with Cavity Ring-Down Absorption Spectroscopy. Journal of Physical Chemistry A. 121:2888-2895., Number 15

Abstract:

Cavity ring-down absorption spectroscopy (CRDS) is employed to investigate one-photon dissociation of (COCl)2 at 248 nm obtaining a primary Cl2 elimination channel. A ratio of vibrational population is estimated to be 1:(0.12 ± 0.03):(0.011 ± 0.003) for the v = 0, 1, and 2 levels. The quantum yield of Cl2 molecular channel is obtained to be 0.8 ± 0.4 initiated from the X̃ 1Ag ground state surface (COCl)2 via internal conversion. The obtained total quantum yield is attributed to both primary ((COCl)2 + hν → 2CO + Cl2) and secondary reactions (dominated by Cl + COCl → Cl2 + CO). The former is estimated to share a yield of >0.14, while the latter contributes up to 0.66. The photodissociation pathway to the molecular products is calculated to proceed via a four-center transition state (TS) from which Cl2 is eliminated synchronously. Installation of the mirrors with reflectivity of 99.995% in the CRDS apparatus prolongs the ring-down time to 70 μs, thus allowing for the contribution from 17% up to 66% of the total Cl2 yield from secondary reaction depending on the reaction temperature. Despite uncertainty in determining the product yield, the primary Cl2 dissociation channel eliminated from (COCl)2 is observed for the first time. © 2017 American Chemical Society.

Notes:

cited By 1

Website