Surface passivation and orientation dependence in the electronic properties of silicon nanowires

Citation:
Zhuo, KN, Chou MY.  2013.  Surface passivation and orientation dependence in the electronic properties of silicon nanowires, Apr. Journal of Physics-Condensed Matter. 25:11., Number 14

Abstract:

Various surface passivations for silicon nanowires have previously been investigated to extend their stability and utility. However, the fundamental mechanisms by which such passivations alter the electronic properties of silicon nanowires have not been clearly understood thus far. In this work, we address this issue through first-principles calculations on fluorine, methyl and hydrogen passivated [110] and [111] silicon nanowires. Comparing these results, we explain how passivations may alter the electronic structure through quantum confinement and strain and demonstrate how silicon nanowires may be modelled by an infinite circular quantum well. We also discuss why [110] nanowires are more strongly influenced by their surface passivation than [111] nanowires.

Notes:

ISI Document Delivery No.: 107ISTimes Cited: 0Cited Reference Count: 33Cited References: Ashcroft N.W., 1975, SOLID STATE PHYS, VHarcourt College Bashouti MY, 2008, J PHYS CHEM C, V112, P19168, DOI 10.1021/jp8077437 Bashouti MY, 2009, SMALL, V5, P2761, DOI 10.1002/smll.200901402 Bashouti MY, 2009, PHYS CHEM CHEM PHYS, V11, P3845, DOI 10.1039/b820559k BLOCHL PE, 1994, PHYS REV B, V50, P17953, DOI 10.1103/PhysRevB.50.17953 Boukai AI, 2008, NATURE, V451, P168, DOI 10.1038/nature06458 Engel Y, 2010, ANGEW CHEM INT EDIT, V49, P6830, DOI 10.1002/anie.201000847 Gao XPA, 2010, NANO LETT, V10, P547, DOI 10.1021/nl9034219 Garnett E, 2010, NANO LETT, V10, P1082, DOI 10.1021/nl100161z Haick H, 2006, J AM CHEM SOC, V128, P8990, DOI 10.1021/ja056785w Kim JY, 2012, IEEE T NANOTECHNOL, V11, P782, DOI 10.1109/TNANO.2012.2197683 Kresse G, 1996, PHYS REV B, V54, P11169, DOI 10.1103/PhysRevB.54.11169 Kresse G, 1996, COMP MATER SCI, V6, P15, DOI 10.1016/0927-0256(96)00008-0 KRESSE G, 1993, PHYS REV B, V47, P558, DOI 10.1103/PhysRevB.47.558 Kresse G, 1999, PHYS REV B, V59, P1758, DOI 10.1103/PhysRevB.59.1758 KRESSE G, 1994, PHYS REV B, V49, P14251, DOI 10.1103/PhysRevB.49.14251 Leu PW, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.235305 Leu PW, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.195320 Migas DB, 2008, J APPL PHYS, V104, DOI 10.1063/1.2956864 Momma K, 2011, J APPL CRYSTALLOGR, V44, P1272, DOI 10.1107/S0021889811038970 Ng MF, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.155435 Nolan M, 2007, NANO LETT, V7, P34, DOI 10.1021/nl061888d PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048 Press W H, 2007, NUMERICAL RECIPES AR, P207 Robinett RW, 2003, EUR J PHYS, V24, P231, DOI 10.1088/0143-0807/24/3/302 Shan B, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.236602 Shen XJ, 2010, ACS NANO, V4, P5869, DOI 10.1021/nn101980x Swain BS, 2010, CURR APPL PHYS, V10, pS439, DOI 10.1016/j.cap.2009.12.029 Wu ZG, 2009, NANO LETT, V9, P2418, DOI 10.1021/nl9010854 Yan JA, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.115319 YEH CY, 1994, PHYS REV B, V50, P14405, DOI 10.1103/PhysRevB.50.14405 Zhao XY, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.125502 Zheng GF, 2010, NANO LETT, V10, P3179, DOI 10.1021/nl1020975Zhuo, Keenan Chou, Mei-YinChou, Mei-Yin/D-3898-2012US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DEFG 02-97ER45632]This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DEFG 02-97ER45632. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC). K Zhuo thanks the hospitality of Academia Sinica where some of the calculations were performed.Iop publishing ltdBristol

Website