Coauthored Publications with: Lin

Book

Lin, KC, Kleiber PD.  2007.  Gas Phase Molecular Reaction and Photodissociation Dynamics. India. : Transworld Research Network Abstract

n/a

Conference Paper

Palazzetti, F, Lombardi A, Yang S-J, Nakamura M, Kasai T, Lin K-C, Che D-C, Tsai P-Y.  2016.  Stereodirectional photodynamics: Experimental and theoretical perspectives. AIP Conference Proceedings. 1790 Abstract

Hexapole oriented 2-bromobutane is photodissociated and detected by a slice-ion-imaging technique at 234 nm. The laser wavelength corresponds to the C - Br bond breaking with emission of a Br atom fragment in two accessible fine-structure states: the ground state Br (2P3/2) and the excited state Br (2P1/2), both observable separately by resonance-enhanced multiphoton ionization (REMPI). Orientation is evaluated by time-of-flight measurements combined with slice-ion-imaging. © 2016 Author(s).

Lin, K-C, Nakamura M, Yang, S. J, Kasai T, Che D-C, Lombardi A, Palazzetti F, Aquilanti V.  2017.  Angular distribution of bromine atomic photofragment in oriented 2-bromobutane via hexapole state selector. AIP Conference Proceedings. 1906 Abstract

In this work, an asymmetric top molecule 2-bromobutane has been successfully oriented by using hexapole state selector combined with orientation field, followed by detection of the bromine atomic photofragment distribution in the photolysis. The photofragment is produced in both the ground Br (2P3/2) and the excited Br (2P1/2) electronic states and both channels are studied by the slice imaging technique, revealing new features in the stereodynamic vectorial properties with respect to previous investigations on non-oriented molecules. © 2017 Author(s).

Lin, K-C.  2014.  Evanescent wave cavity ring-down spectroscopy in application to chemical and biological sensing. Laser Science, LS 2014. Abstract

Evanescent wave cavity ring-down absorption spectroscopy is applied to investigate thermodynamics, kinetics, orientation of the substrates on the surface, probe critical hemimicelle concentration of surfactants, and examine interaction and binding kinetics of DNA strands. © 2014 OSA.

Lin, K-C, Tsai P-Y, Chao M-H, Kasai T, Lombardi A, Palazzetti F, Aquilanti V.  2015.  Photodissociation of methyl formate: Conical intersections, roaming and triple fragmentation. AIP Conference Proceedings. 1702 Abstract

The photodissociation channels of methyl formate have been extensively investigated by two different advanced experimental techniques, ion imaging and Fourier-Transform-Infrared emission spectroscopy, combined with quantum chemical calculations and molecular dynamics simulations. Our aim is to characterize the role of alternative routes to the conventional transition-state mediated pathway: the roaming and the triple fragmentation processes. The photolysis experiments, carried out at a range of laser wavelengths in the vicinity of the triple fragmentation threshold, beside the simulation of large bunches of classical trajectories with different initial conditions, have shown that both mechanisms share a common path that involves a conical intersection during the relaxation process from the electronic excited state S1 to the ground state S0. © 2015 AIP Publishing LLC.

Kasai, T, Che D-C, Tsai P-Y, Lin K-C, Palazzetti F, Aquilanti V.  2015.  Stereodynamics: From elementary processes to macroscopic chemical reactions. AIP Conference Proceedings. 1702 Abstract

This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed. © 2015 AIP Publishing LLC.

Palazzetti, F, Lombardi A, Nakamura M, Yang S-J, Kasai T, Lin K-C, Tsai P-Y, Che D-C.  2016.  Rotational state-selection and alignment of chiral molecules by electrostatic hexapoles. AIP Conference Proceedings. 1790 Abstract

Electrostatic hexapoles are revealed as a powerful tool in the rotational state-selection and alignment of molecules to be utilized in beam experiments on collisional and photoinitiated processes. In the paper, we report results on the application of the hexapolar technique on the recently studied chiral molecules propylene oxide, 2-butanol and 2-bromobutane, to be investigated in selective photodissociation and enantiomeric discrimination. © 2016 Author(s).

Kasai, T, Muthiah B, Lin K-C.  2017.  Role of cooperative network interaction in transition region of roaming reactions: Non-equilibrium steady state vs. thermal equilibrium reaction scheme. AIP Conference Proceedings. 1906 Abstract

This paper proposes a new type of roaming mechanism. We find a signature of trajectory with chaotic behavior in the action-angle diagram of the H + H2 reaction on a LEP surface, namely the trajectory is found to be very sensitive to the initial angle variable which corresponds to the phase of the H2 vibration. The trajectory pattern switches from the direct to the complex forming mechanism, and vice versa, in the angle range (0 ∼ π). In the complex forming angle range, trajectories switch from reactive to non-reactive randomly and suddenly, as the result, we cannot predict the collision pattern from the initial conditions. Therefore, we may classify such trajectory as a new type of roaming with chaotic behavior, and it is different from the ordinary trajectory with deterministic behavior. This chaotic behavior could be due cooperative nearby network interaction (CNN effect). We also suggest that the KPP (Kolmogorow-Petrovsky-Piskounov) equation is useful to estimate the density gradient of the activated reagents, so that one can evaluate the branching ratio to various exit channels, such as triple fragmentation, tight transition state, or the roaming channel with the aid of the present classical trajectory calculation. © 2017 Author(s).

Journal Article

Kasai, T, Che D-C, Okada M, Tsai P-Y, Lin K-C, Palazzetti F, Aquilanti V.  2014.  Directions of chemical change: Experimental characterization of the stereodynamics of photodissociation and reactive processes. Physical Chemistry Chemical Physics. 16:9776-9790., Number 21 AbstractWebsite

This perspective article aims at accounting for the versatility of some current experimental investigations for exploring novel paths in chemical reactions. It updates a previous one [Phys. Chem. Chem. Phys., 2005, 5, 291] and is limited to work by the authors. The use of advanced molecular beam techniques together with a combination of modern tools for specific preparation, selection and detection permits us to discover new trends in reactivity in the gas phase as well as at interfaces. We specifically discuss new facets of stereodynamics, namely the effects of molecular orientation and alignment on reactive and photodissociation processes. Further topics involve roaming paths and triple fragmentation in photodissociation probed by imaging techniques, chirality effects in collisions and deviations from Arrhenius behavior in the temperature dependence of chemical reactions. © the Partner Organisations 2014.

Tsai, P-Y, Lin K-C.  2012.  Rotational energy transfer of SH(X 2 Π, v′=0, J′=0.5-10.5) by collision with Ar: λ-doublet resolved transition propensity. ChemPhysChem. 13:274-280., Number 1 AbstractWebsite

The behavior of λ-doublet resolved rotational energy transfer (RET) by Ar collisions within the SH(X 2Π, v′=0) state is characterized. The matrix elements of terms in the interaction potential responsible for interference effects are calculated to explain the propensity rules for collision-induced transitions within and between spin-orbit manifolds. In this manner, the physical mechanisms responsible for the F 1-F 1, F 2-F 2, and F 1-F 2 transitions may be reasonably identified. As collision energy increases, the propensity for collisional population of the final e or f level is replaced by the e/f-conserving propensity. Such a change in propensity rule can be predicted in terms of energy sudden approximation at high J limit for the pure Hund's case scheme. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Sangili, A, Veerakumar P, Chen S-M, Rajkumar C, Lin K-C.  2019.  Voltammetric determination of vitamin B2 by using a highly porous carbon electrode modified with palladium-copper nanoparticles. Microchimica Acta. 186(5):299. AbstractWebsite

Palladium-copper nanoparticles were placed on activated carbon to give a nanocomposite for electrochemical sensing of riboflavin (vitamin B 2 ). The activated carbon was produced by pyrolysis of natural waste of pistachio nutshells after KOH activation and under a nitrogen atmosphere. The carbons possess a large surface area and micro/meso-porosity. The nanocomposite was characterized by a variety of techniques to confirm structures and morphology. A screen-printed electrode modified with the composite was examined by EIS, CV, DPV, and amperometry. The effects of pH value, scan rate, and stability of the modified electrode were studied. Under optimized conditions, vitamin B 2 displays a well-expressed oxidation peak at −0.15 V (vs. Ag/AgCl) in solutions with a pH value of 7.0. The voltammetric signal increases linearly in the 0.02 to 9 μM concentrations range and a lower detection limit of 7.6 pM. The sensor was successfully applied to the determination of vitamin B 2 even in the presence of other common vitamins and in (spiked) raw milk samples. [Figure not available: see fulltext.]. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature.

Nakamura, M, Yang S-J, Tsai P-Y, Kasai T, Lin K-C, Che D-C, Lombardi A, Palazzetti F, Aquilanti V.  2016.  Hexapole-Oriented Asymmetric-Top Molecules and Their Stereodirectional Photodissociation Dynamics. Journal of Physical Chemistry A. 120:5389-5398., Number 27 AbstractWebsite

Molecular orientation is a fundamental requisite in the study of stereodirected dynamics of collisional and photoinitiated processes. In this past decade, variable hexapolar electric filters have been developed and employed for the rotational-state selection and the alignment of molecules of increasing complexity, for which the main difficulties are their mass, their low symmetry, and the very dense rotational manifold. In this work, for the first time, a complex molecule such as 2-bromobutane, an asymmetric top containing a heavy atom (the bromine), was successfully oriented by a weak homogeneous field placed downstream from the hexapolar filter. Efficiency of the orientation was characterized experimentally, by combining time-of-flight measurements and a slice-ion-imaging detection technique. The application is described to the photodissociation dynamics of the oriented 2-bromobutane, which was carried out at a laser wavelength of 234 nm, corresponding to the breaking of the C-Br bond. The Br photofragment is produced in both the ground Br (2P3/2) and the excited Br (2P1/2) electronic states, and both channels are studied by the slice imaging technique, revealing new features in the velocity and angular distributions with respect to previous investigations on nonoriented molecules. © 2016 American Chemical Society.

Palazzetti, F, Tsai P-Y, Lombardi A, Nakamura M, Che D-C, Kasai T, Lin K-C, Aquilanti V.  2013.  Aligned molecules: Chirality discrimination in photodissociation and in molecular dynamics. Rendiconti Lincei. 24:299-308., Number 3 AbstractWebsite

Emergence of biochemical homochirality is an intriguing topic, and none of the proposed scenarios has encountered a unanimous consensus. Candidates for naturally occurring processes, which may originate chiral selection, involve interaction of matter with light and molecular collisions. We performed and report here: (1) simulations of photodissociation of an oriented chiral molecule by linearly polarized (achiral) light observing that the angular distribution of the photofragments is characteristic of each enantiomer and both differ from the racemic mixture; and (2) molecular dynamics simulations (elastic collisions of oriented hydrogen peroxide, one of the most simple chiral molecules, with Ne atom) demonstrating that the scattering and the recoil angles are specific of the enantiomeric form. The efficacy of non-chiral light (in the case of photodissociation) and of non-chiral projectile (in the case of collisions) is due to the molecular orientation, as an essential requirement to observe chiral effects. The results of the simulations, that we report in this article, provide the background for the perspective realization of experiments which go beyond the well-documented ones involving interaction of circularly polarized laser (chiral light) with the matter, specifically by making use of non-chiral, i.e. linearly polarized or unpolarized light sources, and also by obtaining chiral effects with no use at all of light, but simply inducing them by molecular collisions. The case of vortices is discussed in a companion paper. © 2013 Accademia Nazionale dei Lincei.

Hsiao, M-K, Lin K-C, Hung Y-M.  2011.  Quasiclassical trajectory calculations for Li(22PJ) H2 → LiH(X1) H: Influence by vibrational excitation and translational energy. Journal of Chemical Physics. 134, Number 3 AbstractWebsite

Ab initio potential energy surfaces and the corresponding analytical energy functions of the ground 1A′ and excited 2A′ states for the Li(22P) plus H2 reaction are constructed. Quasiclassical trajectory calculations on the fitted energy functions are performed to characterize the reactions of Li(22P) with H2(v 0, j 1) and H2(v 1, j 1) as well as the reaction when the vibrational energy is replaced by collision energy. For simplicity, the transition probability is assumed to be unity when the trajectories go through the crossing seam region and change to the lower surface. The calculated rotational distributions of LiH(v 0) for both H2(v 0, j 1) and H2(v 1, j 1) reactions are single-peaked with the maximum population at j′ 7, consistent with the previous observation. The vibrational excitation of H2(v 1) may enhance the reaction cross section of LiH(v′ 0) by about 200 times, as compared to a result of 93-107 reported in the experimental measurements. In contrast, the enhancement is 3.1, if the same amount of energy is deposited in the translational states. This endothermic reaction can be considered as an analog of late barrier. According to the trajectory analysis, the vibrational excitation enlarges the H-H distance in the entrance channel to facilitate the reaction, but the excess energy may not open up additional reaction configuration. © 2011 American Institute of Physics.

Manavalan, S, Veerakumar P, Chen S-M, Murugan K, Lin K-C.  2019.  Binder-Free Modification of a Glassy Carbon Electrode by Using Porous Carbon for Voltammetric Determination of Nitro Isomers. ACS Omega. 4(5):8907-8918. AbstractWebsite

In this study, Liquidambar formosana tree leaves have been used as a renewable biomass precursor for preparing porous carbons (PCs). The PCs were produced by pyrolysis of natural waste of leaves after 10% KOH activation under a nitrogen atmosphere and characterized by a variety of state-of-the-art techniques. The PCs possess a large surface area, micro-/mesoporosity, and functional groups on its surface. A glassy carbon electrode modified with high PCs was explored as an efficient binder-free electrocatalyst material for the voltammetric determination of nitro isomers such as 3-nitroaniline (3-NA) and 4-nitroaniline (4-NA). Under optimal experimental conditions, the electrochemical detection of 3-NA and 4-NA was found to have a wide linear range of 0.2-115.6 and 0.5-120 μM and a low detection limit of 0.0551 and 0.0326 μM, respectively, with appreciable selectivity. This route not only enhanced the benefit from biomass wastes but also reduced the cost of producing electrode materials for electrochemical sensors. Additionally, the sensor was successfully applied in the determination of nitro isomers even in the presence of other common electroactive interference and real samples analysis (beverage and pineapple jam solutions). Therefore, the proposed method is simple, rapid, stable, sensitive, specific, reproducible, and cost-effective and can be applicable for real sample detection. © 2019 American Chemical Society.

Nakamura, M, Yang, S. J, Lin K-C, Kasai T, Che D-C, Lombardi A, Palazzetti F, Aquilanti V.  2017.  Stereodirectional images of molecules oriented by a variable-voltage hexapolar field: Fragmentation channels of 2-bromobutane electronically excited at two photolysis wavelengths. Journal of Chemical Physics. 147, Number 1 AbstractWebsite

The asymmetric-top molecule 2-bromobutane is oriented by means of a hexapole state selector; the angular distribution of the bromine atom photofragment, for the two fine-structure components, is acquired by velocity-map ion imaging. The molecular beam, spatially oriented along the time-of-flight axis, is intersected with a linearly polarized laser, whose polarization is tilted by 45° with respect to the detector surface. To obtain the mixing ratio of the perpendicular and parallel transitions, the fragment ion images and angular distributions can be appropriately simulated to give insight on the population mechanism of the specific electronic state involved at each selected excitation wavelength. The photofragment images obtained at 238.6 nm yielded an asymmetry factor β1 of 0.67, indicative of the extent of molecular orientation, and an anisotropy parameter β2 of 1.03, which is a signature of a prevailing parallel transition along the C-Br axis. When the photolysis wavelength is tuned to 254.1 nm, the corresponding angular distribution is less asymmetric (β1 = 0.24) and the obtained small value β2 = 0.12 is a characteristic of a predominantly perpendicular transition. The photofragment angular distributions are also affected by hexapole voltage, especially regarding the asymmetry factor, and this aspect provides information on the effect of molecular orientation. © 2017 Author(s).

Tsai, P-Y, Lin K-C.  2015.  Insight into photofragment vector correlation by a multi-center impulsive model. Physical Chemistry Chemical Physics. 17:19592-19601., Number 29 AbstractWebsite

A multi-center impulsive model has been recently developed to characterize the dynamic feature of product energy distribution in photodissociation of formaldehyde, H2CO → CO + H2. (J. Phys. Chem. A, 2015, 119, 29) The model is extended to predict the vector correlations among transition dipole moment μ of the parent molecule, recoil velocity v and rotational angular momentum j of the fragments produced via the transition state (TS) and roaming path. The correlation results of μ-j, j-j and μ-v vectors of the fragments are consistent with those reported using quasi-classical trajectory simulation on the global potential energy surface. In contrast to the TS route, the vector properties via the roaming path are loosely correlated. This work offers an alternative method to study stereodynamics of the photodissociation process, and is conducive to clarifying the origin of photofragment vector correlation especially for the roaming pathway. This journal is © the Owner Societies.

Lee, H-L, Dhenadhayalan N, Lin K-C.  2015.  Metal ion induced fluorescence resonance energy transfer between crown ether functionalized quantum dots and rhodamine B: Selectivity of K+ ion. RSC Advances. 5:4926-4933., Number 7 AbstractWebsite

We report a ratiometric fluorescent metal ion sensor based on the mechanism of fluorescence resonance energy transfer (FRET) between synthesized 15-crown-5-ether capped CdSe/ZnS quantum dots (QDCE) and 15-crown-5-ether attached rhodamine B (RBCE) in pH 8.3 buffer solution. Fluorescence titration with different metal ions in pH 8.3 buffer solution of the QDCE-RBCE conjugate showed a decrease and an increase in the fluorescence intensity for QDCE and RBCE moieties respectively due to FRET from QDCE to RBCE. This sensor system shows excellent selectivity towards K+ ions resulting in increasing efficiency of FRET. Energy transfer efficiency depends on the affinity between metal ions and crown ether functionalized with QDCE/RBCE. The detailed analysis of FRET was explored. This water soluble ratiometric sensor system can act as a good FRET probe for sensing applications especially in biological systems. © The Royal Society of Chemistry 2015.

Chang, Y-P, Tsai P-Y, Lee H-L, Lin K-C.  2013.  Interfacial electron transfer from CdSe/ZnS quantum dots to TiO2 nanoparticles: Linker dependence at single molecule level. Electroanalysis. 25:1064-1073., Number 4 AbstractWebsite

We utilize single molecule spectroscopy combined with time-correlated single-photon counting to probe electron transfer (ET) kinetics from CdSe/ZnS (core/shell) quantum dots (QDs) to TiO2 through various lengths of linker molecules. The QD-linker-TiO2 complexes with varied linker length, linker structure, and QD size are fabricated by a surface-based stepwise method to show control of the rate and of the magnitude of fluctuations of photo-induced ET at the single molecule level. The ET rate constants are determined to be 2.8×107, 1.9×107, and 3.5×106s-1 for the chain length of 1.5, 6.2 and 13.8Å, respectively. The electronic coupling strengths between QDs and TiO2 are further calculated to be 3.68, 3.60, and 1.59cm-1 for the three different chain lengths by using the Marcus ET model. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Liu, C-Y, Tsai M-T, Tsai P-Y, Liu Y-T, Chen SY, Chang AHH, Lin K-C.  2011.  Gas-phase photodissociation of CH3CHBrCOCl at 248 nm: Detection of molecular fragments by time-resolved FT-IR spectroscopy. ChemPhysChem. 12:206-216., Number 1 AbstractWebsite

By employing time-resolved Fourier transform infrared emission spectroscopy, the fragments HCl (v=1-3), HBr (v=1), and CO (v=1-3) are detected in one-photon dissociation of 2-bromopropionyl chloride (CH3CHBrCOCl) at 248 nm. Ar gas is added to induce internal conversion and to enhance the fragment yields. The time-resolved high-resolution spectra of HCl and CO were analyzed to determine the rovibrational energy deposition of 10.0A ±0.2 and 7.4A ±0.6 kcal mol-1, respectively, while the rotational energy in HBr is evaluated to be 0.9A ±0.1 kcal mol-1. The branching ratio of HCl(v>0)/HBr(v>0) is estimated to be 1:0.53. The bond selectivity of halide formation in the photolysis follows the same trend as the halogen atom elimination. The probability of HCl contribution from a hot Cl reaction with the precursor is negligible according to the measurements of HCl amount by adding an active reagent, Br2, in the system. The HCl elimination channel under Ar addition is verified to be slower by two orders of magnitude than the Cl elimination channel. With the aid of ab initio calculations, the observed fragments are dissociated from the hot ground state CH3CHBrCOCl. A two-body dissociation channel is favored leading to either HCl+CH3CBrCO or HBr+CH2CHCOCl, in which the CH 3CBrCO moiety may further undergo secondary dissociation to release CO. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Veerakumar, P, Rajkumar C, Chen S-M, Thirumalraj B, Lin K-C.  2018.  Ultrathin 2D graphitic carbon nitride nanosheets decorated with silver nanoparticles for electrochemical sensing of quercetin. Journal of Electroanalytical Chemistry. 826:207-216. AbstractWebsite

In this work, we describe a facile fabrication of silver nanoparticles decorated on porous ultrathin two dimensional (2D) graphitic carbon nitride nanosheets (AgNPs@g-CN) via chemical approach, which was characterized by various analytical techniques including cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry. As expected, the AgNPs@g-CN modified glassy carbon electrode (AgNPs@g-CN/GCE) exhibited remarkable electrocatalytic activity towards the detection of quercetin (QCR) with a wide linear range from 1.0 × 10−8 to 1.2 × 10−4 mol L−1 and a lower detection limit of 6.0 × 10−9 mol L−1. Besides, the amperometric results revealed that the peak current for QCR could not affect upon the sequential additions of electroactive interfering species such as metal ions (300 μM), biomolecules (100 μM), and other flavonoids (50 μM) indicating the selectivity of the proposed sensor. Moreover, the AgNPs@g-CN modified electrode displayed higher stability and reproducibility towards the detection of QCR. The AgNPs@g-CN/GCE could also be used to detect QCR in green apple (GA) samples with satisfactory recoveries for practical applications. The concepts behind the novel architecture to modify electrodes can be potentially harnessed in other electrochemical sensors and photocatalysis applications. © 2018 Elsevier B.V.

Veerakumar, P, Dhenadhayalan N, Lin K-C, Liu S-B.  2017.  Silver Nanoparticles Modified Graphitic Carbon Nitride Nanosheets as a Significant Bifunctional Material for Practical Applications. ChemistrySelect. 2:1398-1408., Number 4 AbstractWebsite

Amine-functionalized graphitic carbon nitride (NH2/GCN) nanosheets photoluminescence, catalytic properties and excellent water dispersion stability were prepared and characterized by a variety of different analytical and spectroscopic techniques. The well-dispersed NH2/GCN nanosheets were found to exhibit remarkable pH sensing sensitivity at an ambient temperature with desirable broad detection range (1 ≤ pH ≤ 12). Moreover, upon incorporating silver nanoparticles (Ag NPs), the Ag-NH2/GCN nanocomposites showed excellent performances for catalytic reduction of 4-nitrophenol (4-NP) in NaBH4 with a superior rate constant (k) of 0.1594 s-1 within as short as 30 s. The NH2/GCN and Ag-NH2/GCN nanocomposites reported herein therefore render prospective applications as sensitive pH and practical catalytic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Yao, Y-J, Lin K-C.  2014.  DNA interaction probed by evanescent wave cavity ring-down absorption spectroscopy via functionalized gold nanoparticles. Analytica Chimica Acta. 820:1-8. AbstractWebsite

Evanescent wave cavity ring-down absorption spectroscopy (EW-CRDS) is employed to study interaction and binding kinetics of DNA strands by using gold nanoparticles (Au NPs) as sensitive reporters. These Au NPs are connected to target DNA of study that hybridizes with the complementary DNA fixed on the silica surface. By the absorbance of Au NPs, the interaction between two DNA strands may be examined to yield an adsorption equilibrium constant of 2.2×1010M-1 using Langmuir fit. The binding efficiency that is affected by ion concentration, buffer pH and temperature is also examined. This approach is then applied to the label-free detection of the DNA mutation diseases using the sandwich hybridization assay. For monitoring a gene associated with sickle-cell anemia, the detection limit and the adsorption equilibrium constant is determined to be 1.2pM and (3.7±0.8)×1010M-1, distinct difference from the perfectly matched DNA sequence that yields the corresponding 0.5pM and (1.1±0.2)×1011M-1. The EW-CRDS method appears to have great potential for the investigation of the kinetics of a wide range of biological reactions. © 2014 Elsevier B.V.

Yeh, Y-Y, Chao M-H, Tsai P-Y, Chang Y-B, Tsai M-T, Lin K-C.  2012.  Gas-phase photodissociation of CH 3COCN at 308 nm by time-resolved Fourier-transform infrared emission spectroscopy. Journal of Chemical Physics. 136, Number 4 AbstractWebsite

By using time-resolved Fourier-transform infrared emission spectroscopy, the fragments of HCN(v 1, 2) and CO(v 1-3) are detected in one-photon dissociation of acetyl cyanide (CH 3COCN) at 308 nm. The S 1(A ″), 1(n O, π CO) state at 308 nm has a radiative lifetime of 0.46 ± 0.01 μs, long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of Ar collision-induced internal conversion is estimated to be (1-7) × 10 -12 cm 3 molecule -1 s -1. The measurements of O 2 dependence exclude the production possibility of these fragments via intersystem crossing. The high-resolution spectra of HCN and CO are analyzed to determine the ro-vibrational energy deposition of 81 ± 7 and 32 ± 3 kJmol, respectively. With the aid of ab initio calculations, a two-body dissociation on the energetic ground state is favored leading to HCN CH 2CO, in which the CH 2CO moiety may further undergo secondary dissociation to release CO. The production of CO 2 in the reaction with O 2 confirms existence of CH 2 and a secondary reaction product of CO. The HNC fragment is identified but cannot be assigned, as restricted to a poor signal-to-noise ratio. Because of insufficient excitation energy at 308 nm, the CN and CH 3 fragments that dominate the dissociation products at 193 nm are not detected. © 2012 American Institute of Physics.

Chen, M-S, Fan H-F, Lin K-C.  2010.  Kinetic and thermodynamic investigation of rhodamine B adsorption at solid/solvent interfaces by use of evanescent-wave cavity ring-down spectroscopy. Analytical Chemistry. 82:868-877., Number 3 AbstractWebsite

Evanescent-wave cavity ring-down spectroscopy is applied to investigate the adsorption behavior of rhodamine B at three different interfaces. The adsorption equilibrium constant (Kads) and adsorption free energy of rhodamine B at the silica/methanol interface are determined to be (1.5 ± 0.2) × 104 M-1 and -23.8 ± 0.4 kJ/mol by use of a Langmuir isotherm model. A Langmuir-based kinetic model is also developed to determine the corresponding adsorption and desorption rate constants of (1.02 ± 0.03) × 102 M-1 s-1 and (7.1 ± 0.2) × 10-3 s-1, from which Kads is obtained to be (1.45 ± 0.09) × 104 M-1, in agreement with the value determined under equilibrium conditions. Similarly, when rhodamine B is at the chlorotrimethylsilane-immobilized silica/methanol interface, the adsorption and desorption rate constants are determined to be (1.7 ± 0.2) × 102 M-1 s-1 and (5.0 ± 1.0) × 10-3 s-1· The subsequent Kads is (3.6 ± 0.4) × 104 M-1, which is larger than that at the silica/methanol interface. The former adsorption is dominated by hydrophobic interaction, while the latter is subject to electrostatic attraction. When rhodamine B is at the silica/water interface, there exist three chemical forms, including zwitterion (R+B -), cation (RBH+), and lactone (RBL). A combination of double-layer and Langmuir competitive models is used to fit the adsorption isotherm as a function of solution pH, yielding Kads of (2.5 ± 0.2) × 104 M-1 and (1.1 ± 0.2) × 105 M-1 for R+B- and RBH +, respectively. RBL is considered to have the same Kads value as R+B-. © 2010 American Chemical Society.