Coauthored Publications with: Lin

Journal Article

Tsai, P-Y, Lin K-C.  2015.  Insight into the photodissociation dynamical feature of conventional transition state and roaming pathways by an impulsive model. Journal of Physical Chemistry A. 119:29-38., Number 1 AbstractWebsite

Without the need to construct complicated potential energy surfaces, a multicenter impulsive model is developed to characterize the dynamical feature of conventional transition state (TS) and roaming pathways in the photodissociation of formaldehyde, H2CO → CO + H2. The photofragment energy distributions (PED) resulting from the roaming mechanism are found to closely correlate to a particular configuration that lies close to the edge of the plateau-like intrinsic reaction coordinate, whereas such a PED is associated with the configuration at the saddle point when the conventional TS pathway is followed. The evaluated PED results are consistent with those by experimental findings and quasi-classical trajectory calculations. Following impulsive analysis, the roaming pathway can be viewed as a consequence of energy transfer events between several vibrational modes. For H2CO, the available energy initially accumulated at the C-H bond is transferred to other transitional mode(s) via stretching-bending coupling, and finally to the HH stretching. (Chemical Presented). © 2014 American Chemical Society.

Hu, E-L, Tsai P-Y, Fan H, Lin K-C.  2013.  Photodissociation of gaseous CH3COSH at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: Observation of three dissociation channels. Journal of Chemical Physics. 138, Number 1 AbstractWebsite

Upon one-photon excitation at 248 nm, gaseous CH3C(O)SH is dissociated following three pathways with the products of (1) OCS + CH 4, (2) CH3SH + CO, and (3) CH2CO + H 2S that are detected using time-resolved Fourier-transform infrared emission spectroscopy. The excited state 1(nO, π *CO) has a radiative lifetime of 249 ± 11 ns long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of collision-induced internal conversion is estimated to be 1.1 × 10-10 cm3 molecule -1 s-1. Among the primary dissociation products, a fraction of the CH2CO moiety may undergo further decomposition to CH2 + CO, of which CH2 is confirmed by reaction with O2 producing CO2, CO, OH, and H2CO. Such a secondary decomposition was not observed previously in the Ar matrix-isolated experiments. The high-resolution spectra of CO are analyzed to determine the ro-vibrational energy deposition of 8.7 ± 0.7 kcal/mol, while the remaining primary products with smaller rotational constants are recognized but cannot be spectrally resolved. The CO fragment detected is mainly ascribed to the primary production. A prior distribution method is applied to predict the vibrational distribution of CO that is consistent with the experimental findings. © 2013 American Institute of Physics.

Tsai, M-T, Liu Y-T, Liu C-Y, Tsai P-Y, Lin K-C.  2010.  Photodissociation of gaseous propionyl chloride at 248 nm by time-resolved Fourier-transform infrared spectroscopy. Chemical Physics. 376:1-9., Number 1-3 AbstractWebsite

In one-photon dissociation of propionyl chloride at 248 nm, time-resolved Fourier-transform infrared emission spectroscopy is used to detect the fragments of HCl and CO in the presence of Ar. The inert gas Ar plays a role to enhance the internal conversion. The time-dependence of high-resolution HCl spectra yields a bimodal rotational distribution in the early stage. The total rotational and vibrational energy partitioned in HCl are evaluated to be 1.7 ± 0.3 and 8.8 ± 1.9 kcal/mol, respectively. The CO appearance indicates that HCl may be eliminated through a five-center mechanism accompanied with three-body dissociation of C2H2, HCl, and CO. A four-center mechanism forming HCl and CH3CHCO also contributes to the HCl fragment with a feature of rotational bimodality. However, the probability for the HCl contribution from the hot Cl reaction is negligible. The reaction with CH4 is carried out to evaluate the HCl and Cl elimination rate constants. © 2010 Elsevier B.V. All rights reserved.

Kasai, T, Che D-C, Tsai P-Y, Nakamura M, Muthiah B, Lin K-C.  2018.  Roaming and chaotic behaviors in collisional and photo-initiated molecular-beam reactions: a role of classical vs. quantum nonadiabatic dynamics. Rendiconti Lincei. 29:219-232., Number 2 AbstractWebsite

A new reaction scheme is proposed to account for roaming and chaotic behaviors in collisional and photo-initiated molecular-beam reactions, where nonadiabatic dynamics plays a key role and the collapse of superposition of wave functions is considered to be important in the beginning of the present scheme. Since the feature of molecular orbitals of reagents is crucial in reaction, we showed how to map out the spatial distribution of the relevant HOMO molecular orbitals of CH3Cl in the impact of fast electrons. We identified by experiment that the multiple overlap of nearby molecular orbitals affects even the vibrational motion of adjacent molecule DCl of the transient [ClDCl] chemical species. We also showed dynamical steric effects in the HBr + OH four-atom reaction as a manifestation of the nonadiabatic dynamics in complex systems. The roaming mechanism in the photo-initiated reaction of methyl formate is clarified in detail by experiment as well as the QCT trajectory calculation, where the conical intersection region plays an essential role. We suggest that two types of roaming trajectories coexist, i.e., deterministic and chaotic roaming trajectories based on classical trajectory calculations. To clarify the nonadiabatic dynamics in the roaming mechanism for non-collinear three-dimensional (3D) collisions, a new model of the 3D Polanyi rule is proposed as the extension of the well-established 2D Polanyi rule. In the 3D Polanyi rule, it is expected that the curvature and torsion of Frenet–Serret formulas in three-dimensional space would provide us key concepts in understanding reaction dynamics. © 2018, Accademia Nazionale dei Lincei.

Nakamura, M, Yang S-J, Tsai P-Y, Kasai T, Lin K-C, Che D-C, Lombardi A, Palazzetti F, Aquilanti V.  2016.  Hexapole-Oriented Asymmetric-Top Molecules and Their Stereodirectional Photodissociation Dynamics. Journal of Physical Chemistry A. 120:5389-5398., Number 27 AbstractWebsite

Molecular orientation is a fundamental requisite in the study of stereodirected dynamics of collisional and photoinitiated processes. In this past decade, variable hexapolar electric filters have been developed and employed for the rotational-state selection and the alignment of molecules of increasing complexity, for which the main difficulties are their mass, their low symmetry, and the very dense rotational manifold. In this work, for the first time, a complex molecule such as 2-bromobutane, an asymmetric top containing a heavy atom (the bromine), was successfully oriented by a weak homogeneous field placed downstream from the hexapolar filter. Efficiency of the orientation was characterized experimentally, by combining time-of-flight measurements and a slice-ion-imaging detection technique. The application is described to the photodissociation dynamics of the oriented 2-bromobutane, which was carried out at a laser wavelength of 234 nm, corresponding to the breaking of the C-Br bond. The Br photofragment is produced in both the ground Br (2P3/2) and the excited Br (2P1/2) electronic states, and both channels are studied by the slice imaging technique, revealing new features in the velocity and angular distributions with respect to previous investigations on nonoriented molecules. © 2016 American Chemical Society.

Kasai, T, Che D-C, Okada M, Tsai P-Y, Lin K-C, Palazzetti F, Aquilanti V.  2014.  Directions of chemical change: Experimental characterization of the stereodynamics of photodissociation and reactive processes. Physical Chemistry Chemical Physics. 16:9776-9790., Number 21 AbstractWebsite

This perspective article aims at accounting for the versatility of some current experimental investigations for exploring novel paths in chemical reactions. It updates a previous one [Phys. Chem. Chem. Phys., 2005, 5, 291] and is limited to work by the authors. The use of advanced molecular beam techniques together with a combination of modern tools for specific preparation, selection and detection permits us to discover new trends in reactivity in the gas phase as well as at interfaces. We specifically discuss new facets of stereodynamics, namely the effects of molecular orientation and alignment on reactive and photodissociation processes. Further topics involve roaming paths and triple fragmentation in photodissociation probed by imaging techniques, chirality effects in collisions and deviations from Arrhenius behavior in the temperature dependence of chemical reactions. © the Partner Organisations 2014.

Tsai, P-Y, Lin K-C.  2012.  Rotational energy transfer of SH(X 2 Π, v′=0, J′=0.5-10.5) by collision with Ar: λ-doublet resolved transition propensity. ChemPhysChem. 13:274-280., Number 1 AbstractWebsite

The behavior of λ-doublet resolved rotational energy transfer (RET) by Ar collisions within the SH(X 2Π, v′=0) state is characterized. The matrix elements of terms in the interaction potential responsible for interference effects are calculated to explain the propensity rules for collision-induced transitions within and between spin-orbit manifolds. In this manner, the physical mechanisms responsible for the F 1-F 1, F 2-F 2, and F 1-F 2 transitions may be reasonably identified. As collision energy increases, the propensity for collisional population of the final e or f level is replaced by the e/f-conserving propensity. Such a change in propensity rule can be predicted in terms of energy sudden approximation at high J limit for the pure Hund's case scheme. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Sangili, A, Veerakumar P, Chen S-M, Rajkumar C, Lin K-C.  2019.  Voltammetric determination of vitamin B2 by using a highly porous carbon electrode modified with palladium-copper nanoparticles. Microchimica Acta. 186(5):299. AbstractWebsite

Palladium-copper nanoparticles were placed on activated carbon to give a nanocomposite for electrochemical sensing of riboflavin (vitamin B 2 ). The activated carbon was produced by pyrolysis of natural waste of pistachio nutshells after KOH activation and under a nitrogen atmosphere. The carbons possess a large surface area and micro/meso-porosity. The nanocomposite was characterized by a variety of techniques to confirm structures and morphology. A screen-printed electrode modified with the composite was examined by EIS, CV, DPV, and amperometry. The effects of pH value, scan rate, and stability of the modified electrode were studied. Under optimized conditions, vitamin B 2 displays a well-expressed oxidation peak at −0.15 V (vs. Ag/AgCl) in solutions with a pH value of 7.0. The voltammetric signal increases linearly in the 0.02 to 9 μM concentrations range and a lower detection limit of 7.6 pM. The sensor was successfully applied to the determination of vitamin B 2 even in the presence of other common vitamins and in (spiked) raw milk samples. [Figure not available: see fulltext.]. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature.

Tsai, P-Y, Lin K-C.  2015.  Insight into photofragment vector correlation by a multi-center impulsive model. Physical Chemistry Chemical Physics. 17:19592-19601., Number 29 AbstractWebsite

A multi-center impulsive model has been recently developed to characterize the dynamic feature of product energy distribution in photodissociation of formaldehyde, H2CO → CO + H2. (J. Phys. Chem. A, 2015, 119, 29) The model is extended to predict the vector correlations among transition dipole moment μ of the parent molecule, recoil velocity v and rotational angular momentum j of the fragments produced via the transition state (TS) and roaming path. The correlation results of μ-j, j-j and μ-v vectors of the fragments are consistent with those reported using quasi-classical trajectory simulation on the global potential energy surface. In contrast to the TS route, the vector properties via the roaming path are loosely correlated. This work offers an alternative method to study stereodynamics of the photodissociation process, and is conducive to clarifying the origin of photofragment vector correlation especially for the roaming pathway. This journal is © the Owner Societies.

Palazzetti, F, Tsai P-Y, Lombardi A, Nakamura M, Che D-C, Kasai T, Lin K-C, Aquilanti V.  2013.  Aligned molecules: Chirality discrimination in photodissociation and in molecular dynamics. Rendiconti Lincei. 24:299-308., Number 3 AbstractWebsite

Emergence of biochemical homochirality is an intriguing topic, and none of the proposed scenarios has encountered a unanimous consensus. Candidates for naturally occurring processes, which may originate chiral selection, involve interaction of matter with light and molecular collisions. We performed and report here: (1) simulations of photodissociation of an oriented chiral molecule by linearly polarized (achiral) light observing that the angular distribution of the photofragments is characteristic of each enantiomer and both differ from the racemic mixture; and (2) molecular dynamics simulations (elastic collisions of oriented hydrogen peroxide, one of the most simple chiral molecules, with Ne atom) demonstrating that the scattering and the recoil angles are specific of the enantiomeric form. The efficacy of non-chiral light (in the case of photodissociation) and of non-chiral projectile (in the case of collisions) is due to the molecular orientation, as an essential requirement to observe chiral effects. The results of the simulations, that we report in this article, provide the background for the perspective realization of experiments which go beyond the well-documented ones involving interaction of circularly polarized laser (chiral light) with the matter, specifically by making use of non-chiral, i.e. linearly polarized or unpolarized light sources, and also by obtaining chiral effects with no use at all of light, but simply inducing them by molecular collisions. The case of vortices is discussed in a companion paper. © 2013 Accademia Nazionale dei Lincei.

Hsiao, M-K, Lin K-C, Hung Y-M.  2011.  Quasiclassical trajectory calculations for Li(22PJ) H2 → LiH(X1) H: Influence by vibrational excitation and translational energy. Journal of Chemical Physics. 134, Number 3 AbstractWebsite

Ab initio potential energy surfaces and the corresponding analytical energy functions of the ground 1A′ and excited 2A′ states for the Li(22P) plus H2 reaction are constructed. Quasiclassical trajectory calculations on the fitted energy functions are performed to characterize the reactions of Li(22P) with H2(v 0, j 1) and H2(v 1, j 1) as well as the reaction when the vibrational energy is replaced by collision energy. For simplicity, the transition probability is assumed to be unity when the trajectories go through the crossing seam region and change to the lower surface. The calculated rotational distributions of LiH(v 0) for both H2(v 0, j 1) and H2(v 1, j 1) reactions are single-peaked with the maximum population at j′ 7, consistent with the previous observation. The vibrational excitation of H2(v 1) may enhance the reaction cross section of LiH(v′ 0) by about 200 times, as compared to a result of 93-107 reported in the experimental measurements. In contrast, the enhancement is 3.1, if the same amount of energy is deposited in the translational states. This endothermic reaction can be considered as an analog of late barrier. According to the trajectory analysis, the vibrational excitation enlarges the H-H distance in the entrance channel to facilitate the reaction, but the excess energy may not open up additional reaction configuration. © 2011 American Institute of Physics.

Manavalan, S, Veerakumar P, Chen S-M, Murugan K, Lin K-C.  2019.  Binder-Free Modification of a Glassy Carbon Electrode by Using Porous Carbon for Voltammetric Determination of Nitro Isomers. ACS Omega. 4(5):8907-8918. AbstractWebsite

In this study, Liquidambar formosana tree leaves have been used as a renewable biomass precursor for preparing porous carbons (PCs). The PCs were produced by pyrolysis of natural waste of leaves after 10% KOH activation under a nitrogen atmosphere and characterized by a variety of state-of-the-art techniques. The PCs possess a large surface area, micro-/mesoporosity, and functional groups on its surface. A glassy carbon electrode modified with high PCs was explored as an efficient binder-free electrocatalyst material for the voltammetric determination of nitro isomers such as 3-nitroaniline (3-NA) and 4-nitroaniline (4-NA). Under optimal experimental conditions, the electrochemical detection of 3-NA and 4-NA was found to have a wide linear range of 0.2-115.6 and 0.5-120 μM and a low detection limit of 0.0551 and 0.0326 μM, respectively, with appreciable selectivity. This route not only enhanced the benefit from biomass wastes but also reduced the cost of producing electrode materials for electrochemical sensors. Additionally, the sensor was successfully applied in the determination of nitro isomers even in the presence of other common electroactive interference and real samples analysis (beverage and pineapple jam solutions). Therefore, the proposed method is simple, rapid, stable, sensitive, specific, reproducible, and cost-effective and can be applicable for real sample detection. © 2019 American Chemical Society.

Nakamura, M, Yang, S. J, Lin K-C, Kasai T, Che D-C, Lombardi A, Palazzetti F, Aquilanti V.  2017.  Stereodirectional images of molecules oriented by a variable-voltage hexapolar field: Fragmentation channels of 2-bromobutane electronically excited at two photolysis wavelengths. Journal of Chemical Physics. 147, Number 1 AbstractWebsite

The asymmetric-top molecule 2-bromobutane is oriented by means of a hexapole state selector; the angular distribution of the bromine atom photofragment, for the two fine-structure components, is acquired by velocity-map ion imaging. The molecular beam, spatially oriented along the time-of-flight axis, is intersected with a linearly polarized laser, whose polarization is tilted by 45° with respect to the detector surface. To obtain the mixing ratio of the perpendicular and parallel transitions, the fragment ion images and angular distributions can be appropriately simulated to give insight on the population mechanism of the specific electronic state involved at each selected excitation wavelength. The photofragment images obtained at 238.6 nm yielded an asymmetry factor β1 of 0.67, indicative of the extent of molecular orientation, and an anisotropy parameter β2 of 1.03, which is a signature of a prevailing parallel transition along the C-Br axis. When the photolysis wavelength is tuned to 254.1 nm, the corresponding angular distribution is less asymmetric (β1 = 0.24) and the obtained small value β2 = 0.12 is a characteristic of a predominantly perpendicular transition. The photofragment angular distributions are also affected by hexapole voltage, especially regarding the asymmetry factor, and this aspect provides information on the effect of molecular orientation. © 2017 Author(s).

Veerakumar, P, Dhenadhayalan N, Lin K-C, Liu S-B.  2017.  Silver Nanoparticles Modified Graphitic Carbon Nitride Nanosheets as a Significant Bifunctional Material for Practical Applications. ChemistrySelect. 2:1398-1408., Number 4 AbstractWebsite

Amine-functionalized graphitic carbon nitride (NH2/GCN) nanosheets photoluminescence, catalytic properties and excellent water dispersion stability were prepared and characterized by a variety of different analytical and spectroscopic techniques. The well-dispersed NH2/GCN nanosheets were found to exhibit remarkable pH sensing sensitivity at an ambient temperature with desirable broad detection range (1 ≤ pH ≤ 12). Moreover, upon incorporating silver nanoparticles (Ag NPs), the Ag-NH2/GCN nanocomposites showed excellent performances for catalytic reduction of 4-nitrophenol (4-NP) in NaBH4 with a superior rate constant (k) of 0.1594 s-1 within as short as 30 s. The NH2/GCN and Ag-NH2/GCN nanocomposites reported herein therefore render prospective applications as sensitive pH and practical catalytic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Lee, H-L, Dhenadhayalan N, Lin K-C.  2015.  Metal ion induced fluorescence resonance energy transfer between crown ether functionalized quantum dots and rhodamine B: Selectivity of K+ ion. RSC Advances. 5:4926-4933., Number 7 AbstractWebsite

We report a ratiometric fluorescent metal ion sensor based on the mechanism of fluorescence resonance energy transfer (FRET) between synthesized 15-crown-5-ether capped CdSe/ZnS quantum dots (QDCE) and 15-crown-5-ether attached rhodamine B (RBCE) in pH 8.3 buffer solution. Fluorescence titration with different metal ions in pH 8.3 buffer solution of the QDCE-RBCE conjugate showed a decrease and an increase in the fluorescence intensity for QDCE and RBCE moieties respectively due to FRET from QDCE to RBCE. This sensor system shows excellent selectivity towards K+ ions resulting in increasing efficiency of FRET. Energy transfer efficiency depends on the affinity between metal ions and crown ether functionalized with QDCE/RBCE. The detailed analysis of FRET was explored. This water soluble ratiometric sensor system can act as a good FRET probe for sensing applications especially in biological systems. © The Royal Society of Chemistry 2015.

Chang, Y-P, Tsai P-Y, Lee H-L, Lin K-C.  2013.  Interfacial electron transfer from CdSe/ZnS quantum dots to TiO2 nanoparticles: Linker dependence at single molecule level. Electroanalysis. 25:1064-1073., Number 4 AbstractWebsite

We utilize single molecule spectroscopy combined with time-correlated single-photon counting to probe electron transfer (ET) kinetics from CdSe/ZnS (core/shell) quantum dots (QDs) to TiO2 through various lengths of linker molecules. The QD-linker-TiO2 complexes with varied linker length, linker structure, and QD size are fabricated by a surface-based stepwise method to show control of the rate and of the magnitude of fluctuations of photo-induced ET at the single molecule level. The ET rate constants are determined to be 2.8×107, 1.9×107, and 3.5×106s-1 for the chain length of 1.5, 6.2 and 13.8Å, respectively. The electronic coupling strengths between QDs and TiO2 are further calculated to be 3.68, 3.60, and 1.59cm-1 for the three different chain lengths by using the Marcus ET model. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Liu, C-Y, Tsai M-T, Tsai P-Y, Liu Y-T, Chen SY, Chang AHH, Lin K-C.  2011.  Gas-phase photodissociation of CH3CHBrCOCl at 248 nm: Detection of molecular fragments by time-resolved FT-IR spectroscopy. ChemPhysChem. 12:206-216., Number 1 AbstractWebsite

By employing time-resolved Fourier transform infrared emission spectroscopy, the fragments HCl (v=1-3), HBr (v=1), and CO (v=1-3) are detected in one-photon dissociation of 2-bromopropionyl chloride (CH3CHBrCOCl) at 248 nm. Ar gas is added to induce internal conversion and to enhance the fragment yields. The time-resolved high-resolution spectra of HCl and CO were analyzed to determine the rovibrational energy deposition of 10.0A ±0.2 and 7.4A ±0.6 kcal mol-1, respectively, while the rotational energy in HBr is evaluated to be 0.9A ±0.1 kcal mol-1. The branching ratio of HCl(v>0)/HBr(v>0) is estimated to be 1:0.53. The bond selectivity of halide formation in the photolysis follows the same trend as the halogen atom elimination. The probability of HCl contribution from a hot Cl reaction with the precursor is negligible according to the measurements of HCl amount by adding an active reagent, Br2, in the system. The HCl elimination channel under Ar addition is verified to be slower by two orders of magnitude than the Cl elimination channel. With the aid of ab initio calculations, the observed fragments are dissociated from the hot ground state CH3CHBrCOCl. A two-body dissociation channel is favored leading to either HCl+CH3CBrCO or HBr+CH2CHCOCl, in which the CH 3CBrCO moiety may further undergo secondary dissociation to release CO. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Veerakumar, P, Rajkumar C, Chen S-M, Thirumalraj B, Lin K-C.  2018.  Ultrathin 2D graphitic carbon nitride nanosheets decorated with silver nanoparticles for electrochemical sensing of quercetin. Journal of Electroanalytical Chemistry. 826:207-216. AbstractWebsite

In this work, we describe a facile fabrication of silver nanoparticles decorated on porous ultrathin two dimensional (2D) graphitic carbon nitride nanosheets (AgNPs@g-CN) via chemical approach, which was characterized by various analytical techniques including cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry. As expected, the AgNPs@g-CN modified glassy carbon electrode (AgNPs@g-CN/GCE) exhibited remarkable electrocatalytic activity towards the detection of quercetin (QCR) with a wide linear range from 1.0 × 10−8 to 1.2 × 10−4 mol L−1 and a lower detection limit of 6.0 × 10−9 mol L−1. Besides, the amperometric results revealed that the peak current for QCR could not affect upon the sequential additions of electroactive interfering species such as metal ions (300 μM), biomolecules (100 μM), and other flavonoids (50 μM) indicating the selectivity of the proposed sensor. Moreover, the AgNPs@g-CN modified electrode displayed higher stability and reproducibility towards the detection of QCR. The AgNPs@g-CN/GCE could also be used to detect QCR in green apple (GA) samples with satisfactory recoveries for practical applications. The concepts behind the novel architecture to modify electrodes can be potentially harnessed in other electrochemical sensors and photocatalysis applications. © 2018 Elsevier B.V.

Muthiah, B, Paredes-Roibás D, Kasai T, Lin K-C.  2019.  Photodissociation of CH2BrI using cavity ring-down spectroscopy: in search of a BrI elimination channel. Physical Chemistry Chemical Physics. 21(26):13943-13949. AbstractWebsite

Photodissociation of CH2BrI was investigated in search of unimolecular elimination of BrI via a primary channel using cavity ring-down absorption spectroscopy (CRDS) at 248 nm. The BrI spectra were acquired involving the first three ground vibrational levels corresponding to A3Π1 ← X1Σ+ transition. With the aid of spectral simulation, the BrI rotational lines were assigned. The nascent vibrational populations for v′′ = 0, 1, and 2 levels are obtained with a population ratio of 1:(0.58 ± 0.10):(0.34 ± 0.05), corresponding to a Boltzmann-like vibrational temperature of 713 ± 49 K. The quantum yield of the ground state BrI elimination reaction is determined to be 0.044 ± 0.014. The CCSD(T)//B3LYP/MIDI! method was employed to explore the potential energy surface for the unimolecular elimination of BrI from CH2BrI.

Yao, Y-J, Lin K-C.  2014.  DNA interaction probed by evanescent wave cavity ring-down absorption spectroscopy via functionalized gold nanoparticles. Analytica Chimica Acta. 820:1-8. AbstractWebsite

Evanescent wave cavity ring-down absorption spectroscopy (EW-CRDS) is employed to study interaction and binding kinetics of DNA strands by using gold nanoparticles (Au NPs) as sensitive reporters. These Au NPs are connected to target DNA of study that hybridizes with the complementary DNA fixed on the silica surface. By the absorbance of Au NPs, the interaction between two DNA strands may be examined to yield an adsorption equilibrium constant of 2.2×1010M-1 using Langmuir fit. The binding efficiency that is affected by ion concentration, buffer pH and temperature is also examined. This approach is then applied to the label-free detection of the DNA mutation diseases using the sandwich hybridization assay. For monitoring a gene associated with sickle-cell anemia, the detection limit and the adsorption equilibrium constant is determined to be 1.2pM and (3.7±0.8)×1010M-1, distinct difference from the perfectly matched DNA sequence that yields the corresponding 0.5pM and (1.1±0.2)×1011M-1. The EW-CRDS method appears to have great potential for the investigation of the kinetics of a wide range of biological reactions. © 2014 Elsevier B.V.

Yeh, Y-Y, Chao M-H, Tsai P-Y, Chang Y-B, Tsai M-T, Lin K-C.  2012.  Gas-phase photodissociation of CH 3COCN at 308 nm by time-resolved Fourier-transform infrared emission spectroscopy. Journal of Chemical Physics. 136, Number 4 AbstractWebsite

By using time-resolved Fourier-transform infrared emission spectroscopy, the fragments of HCN(v 1, 2) and CO(v 1-3) are detected in one-photon dissociation of acetyl cyanide (CH 3COCN) at 308 nm. The S 1(A ″), 1(n O, π CO) state at 308 nm has a radiative lifetime of 0.46 ± 0.01 μs, long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of Ar collision-induced internal conversion is estimated to be (1-7) × 10 -12 cm 3 molecule -1 s -1. The measurements of O 2 dependence exclude the production possibility of these fragments via intersystem crossing. The high-resolution spectra of HCN and CO are analyzed to determine the ro-vibrational energy deposition of 81 ± 7 and 32 ± 3 kJmol, respectively. With the aid of ab initio calculations, a two-body dissociation on the energetic ground state is favored leading to HCN CH 2CO, in which the CH 2CO moiety may further undergo secondary dissociation to release CO. The production of CO 2 in the reaction with O 2 confirms existence of CH 2 and a secondary reaction product of CO. The HNC fragment is identified but cannot be assigned, as restricted to a poor signal-to-noise ratio. Because of insufficient excitation energy at 308 nm, the CN and CH 3 fragments that dominate the dissociation products at 193 nm are not detected. © 2012 American Institute of Physics.

Chen, M-S, Fan H-F, Lin K-C.  2010.  Kinetic and thermodynamic investigation of rhodamine B adsorption at solid/solvent interfaces by use of evanescent-wave cavity ring-down spectroscopy. Analytical Chemistry. 82:868-877., Number 3 AbstractWebsite

Evanescent-wave cavity ring-down spectroscopy is applied to investigate the adsorption behavior of rhodamine B at three different interfaces. The adsorption equilibrium constant (Kads) and adsorption free energy of rhodamine B at the silica/methanol interface are determined to be (1.5 ± 0.2) × 104 M-1 and -23.8 ± 0.4 kJ/mol by use of a Langmuir isotherm model. A Langmuir-based kinetic model is also developed to determine the corresponding adsorption and desorption rate constants of (1.02 ± 0.03) × 102 M-1 s-1 and (7.1 ± 0.2) × 10-3 s-1, from which Kads is obtained to be (1.45 ± 0.09) × 104 M-1, in agreement with the value determined under equilibrium conditions. Similarly, when rhodamine B is at the chlorotrimethylsilane-immobilized silica/methanol interface, the adsorption and desorption rate constants are determined to be (1.7 ± 0.2) × 102 M-1 s-1 and (5.0 ± 1.0) × 10-3 s-1· The subsequent Kads is (3.6 ± 0.4) × 104 M-1, which is larger than that at the silica/methanol interface. The former adsorption is dominated by hydrophobic interaction, while the latter is subject to electrostatic attraction. When rhodamine B is at the silica/water interface, there exist three chemical forms, including zwitterion (R+B -), cation (RBH+), and lactone (RBL). A combination of double-layer and Langmuir competitive models is used to fit the adsorption isotherm as a function of solution pH, yielding Kads of (2.5 ± 0.2) × 104 M-1 and (1.1 ± 0.2) × 105 M-1 for R+B- and RBH +, respectively. RBL is considered to have the same Kads value as R+B-. © 2010 American Chemical Society.

Veerakumar, P, Panneer Muthuselvam I, Thanasekaran P, Lin K-C.  2018.  Low-cost palladium decorated on: M -aminophenol-formaldehyde-derived porous carbon spheres for the enhanced catalytic reduction of organic dyes. Inorganic Chemistry Frontiers. 5:354-363., Number 2 AbstractWebsite

We report the use of palladium nanoparticles (Pd NPs) immobilized on m-aminophenol/formaldehyde resin (APF)-derived porous carbon spheres (Pd@PCS) as heterogeneous catalysts for the reduction of organic dyes. The morphology, structure, surface compositions, and textural properties of PCS and the Pd@PCS catalyst were characterized fully to document the excellent catalytic efficiency of Pd@PCS composites. Pd NPs of mean particle size ca. 12 ± 0.8 nm were highly dispersed on the surface of PCSs, and possessed surface area and pore volume as high as 896.3 m2 g-1 and 0.934 cm3 g-1, respectively. Prepared catalysts were applied to the reduction of various organic dyes; high catalytic activity towards crystal violet, eosin yellow and sunset yellow was observed. More importantly, the catalysts could be recovered readily, and reused many times with good stability. Therefore, the robust material utilized for the treatment of containing organic dyes could be used widely for environmental applications. © 2018 the Partner Organisations.

Tsai, P-Y, Lin K-C.  2011.  Doublet rotational energy transfer of the SH (X 2Π, v′′ = 0) state by collisions with Ar. Physical Chemistry Chemical Physics. 13:8857-8868., Number 19 AbstractWebsite

The rotational energy transfer (RET) by Ar collisions within the SH X 2Π (v′′ = 0, J′′ = 0.5-10.5) state is characterized. The integral cross sections as a function of collision energy for each rotational transition are calculated using a quantum scattering method in which the constructed potential energy functions are based on a ground state potential energy surface (PES) reported previously. On the other hand, a laser-induced excitation fluorescence technique is employed to monitor the relaxation of the rotational population as a function of photolysis-probe delay time following the photodissociation of H2S at 248 nm. The rotational population evolution is comparable to its theoretical counterpart based on calculated Λ-resolved RET rate constants. The propensity in Λ-resolved RET transitions is found to approximately resemble the case of OH(X 2Π, v′′ = 0) + Ar. The Λ-averaged RET collisions are also analyzed and result in several propensity rules in the transitions. Most propensity rules are similar to those observed in the collisions of SH(A 2Σ+) by Ar. However, the behavior of the conserving ratio, defined as rate constants for spin-orbit conserving transition divided by those for spin-orbit changing transition, shows distinct difference from those described by Hund’s case (b). © the Owner Societies.

Dhenadhayalan, N, Hsin T-H, Lin K-C.  2019.  Multifunctional Nanohybrid of Palladium Nanoparticles Encapsulated by Carbon-Dots for Exploiting Synergetic Applications. Advanced Materials Interfaces. 6(19) AbstractWebsite

Palladium nanoparticles encapsulated in the carbon dots (Pd/C-dots) are demonstrated to play a role of multifunctional nanohybrid in the synergetic applications of sensor and catalysis. The photochemical method is applied to synthesize Pd/C-dots in which Pd nanoparticles (NPs) are dispersedly encapsulated by C-dots layer. The nanohybrid can function as a fluorescent sensor and reductive catalyst, due to the inherent properties of C-dots and Pd NPs, respectively. The Pd/C-dots exhibit a highly selective and sensitive detection toward the nickel (Ni2+) ion with a detection limit of 7.26 × 10−9 m. Moreover, the Ni2+ is detected in MCF-7 live cells signifying the applicability of nanohybrid as a promising sensor. On the other hand, the Pd/C-dots show an excellent catalytic performance in the reduction of 4-nitrophenol and eosin yellow. A plausible mechanism for sensing and catalysis behavior is proposed. The sensor system is designed on the basis of the fluorescence turn-on when Ni2+ interacts with functional groups of the C-dots layer. The activities of catalytic reduction are mainly governed by the Pd NPs and further enhanced when the C-dots layer is incorporated. The Pd/C-dots can serve as a new paradigm for opening a potential trend in the design of multifunctional materials to diverse applications. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim