Coauthored Publications with: Liu

Journal Article

Liu, Y-T, Tsai M-T, Liu C-Y, Tsai P-Y, Lin K-C, Shih YH, Chang AHH.  2010.  Photodissociation of gaseous acetyl chloride at 248 nm by time-resolved fourier-transform infrared spectroscopy: The HCl, CO, and CH2 product channels. Journal of Physical Chemistry A. 114:7275-7283., Number 27 AbstractWebsite

In one-photon dissociation of gaseous acetyl chloride at 248 nm, time-resolved Fourier-transform infrared emission spectroscopy is used to detect the fragments of HCl, CO, and CH2 in the presence of Ar or O 2. The high-resolution spectra of HCl and CO are analyzed to yield the corresponding internal energy deposition of 8.9 ± 1.1 and 6.2 ± 0.9 kcal/mol. The presence of the CH2 fragment is verified by detecting the CO2 product resulting from the reaction of CH 2 and the added O2. The probability of the HCl formation via a hot Cl reaction with the precursor is examined to be negligible by performing two experiments, the CH3COCl pressure dependence and the measurement of Br2 with Cl reaction. The HCl elimination channel under the Ar addition is verified to be slowed by 2 orders of magnitude, as compared to the Cl elimination channel. The observed fragments are proposed to dissociate on the hot ground electronic state via collision-induced internal conversion. A two-body dissociation channel is favored leading to HCl and CH2CO, followed by secondary dissociation. © 2010 American Chemical Society.

Veerakumar, P, Dhenadhayalan N, Lin K-C, Liu S-B.  2015.  Highly stable ruthenium nanoparticles on 3D mesoporous carbon: An excellent opportunity for reduction reactions. Journal of Materials Chemistry A. 3:23448-23457., Number 46 AbstractWebsite

Carbon mesoporous materials (CPMs) have great potential in the field of heterogeneous catalysis. Highly dispersed ruthenium nanoparticles (RuNPs) embedded in three dimensional (3D) CPMs as catalysts with a high surface area (1474 m2 g-1) were prepared by microwave-thermal reduction processes. Characterization technologies including X-ray diffraction (XRD), N2 adsorption/desorption isotherm measurements, field emission transmission electron microscopy (FE-TEM), thermogravimetric analysis (TGA), hydrogen temperature-programmed reduction (H2-TPR), Raman spectroscopy and 13C solid state cross polarization and magic angle spinning (13C CP/MAS) NMR spectroscopy were utilized to scrutinize the catalysts. It was revealed that the Ru/CPM catalysts exhibited a highly ordered 3D mesoporous structure and a large surface area and were widely used as catalysts for reduction reactions. Reduction of p-nitroaniline (p-NA) and crystal violet (CV) using NaBH4 with the use of this catalyst was studied by means of UV-vis spectroscopy. Here, NaBH4 acts as a hydrogen donor. This catalyst shows an excellent catalytic activity towards reduction of p-NA and CV dye at room temperature. Due to the promising properties of CPMs, they can be utilized to fabricate 3D carbon-based materials for a variety of novel applications. © The Royal Society of Chemistry 2015.

Veerakumar, P, Panneer Muthuselvam I, Hung C-T, Lin K-C, Chou F-C, Liu S-B.  2016.  Biomass-Derived Activated Carbon Supported Fe3O4 Nanoparticles as Recyclable Catalysts for Reduction of Nitroarenes. ACS Sustainable Chemistry and Engineering. 4:6772-6782., Number 12 AbstractWebsite

Highly porous beetroot-derived activated carbons incorporated with well-dispered magnetite nanoparticles (Fe3O4 NPs; average size ca. 3.8 ± 0.5 nm) were fabricated via a microwave-assisted synthesis route. The magnetic Fe3O4@BRAC catalysts so-fabricated were characterized by a variety of diffent physicochemical teniques, viz. XRD, FE-TEM, VSM, gas physisorption/chemisorption, TGA, XPS, Raman, ICP-AES, and FT-IR spectroscopy. The as-prepared catalysts were exploited for heterogeneous-phase reduction of a series of nitroaromatics (RNO2; R = H, OH, NH2, CH3, and COOH) under KOH as a base, isopropyl alcohol acting as a hydrogen donor as well as solvent and also tested with other solvents. The reaction system not only exhibits excellent activity with high anilines yield but also represents a green and durable catalytic process, which facilitates facile operation, easy separation, and catalyst recycle. © 2016 American Chemical Society.

Veerakumar, P, Dhenadhayalan N, Lin K-C, Liu S-B.  2017.  Silver Nanoparticles Modified Graphitic Carbon Nitride Nanosheets as a Significant Bifunctional Material for Practical Applications. ChemistrySelect. 2:1398-1408., Number 4 AbstractWebsite

Amine-functionalized graphitic carbon nitride (NH2/GCN) nanosheets photoluminescence, catalytic properties and excellent water dispersion stability were prepared and characterized by a variety of different analytical and spectroscopic techniques. The well-dispersed NH2/GCN nanosheets were found to exhibit remarkable pH sensing sensitivity at an ambient temperature with desirable broad detection range (1 ≤ pH ≤ 12). Moreover, upon incorporating silver nanoparticles (Ag NPs), the Ag-NH2/GCN nanocomposites showed excellent performances for catalytic reduction of 4-nitrophenol (4-NP) in NaBH4 with a superior rate constant (k) of 0.1594 s-1 within as short as 30 s. The NH2/GCN and Ag-NH2/GCN nanocomposites reported herein therefore render prospective applications as sensitive pH and practical catalytic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Tsai, M-T, Liu Y-T, Liu C-Y, Tsai P-Y, Lin K-C.  2010.  Photodissociation of gaseous propionyl chloride at 248 nm by time-resolved Fourier-transform infrared spectroscopy. Chemical Physics. 376:1-9., Number 1-3 AbstractWebsite

In one-photon dissociation of propionyl chloride at 248 nm, time-resolved Fourier-transform infrared emission spectroscopy is used to detect the fragments of HCl and CO in the presence of Ar. The inert gas Ar plays a role to enhance the internal conversion. The time-dependence of high-resolution HCl spectra yields a bimodal rotational distribution in the early stage. The total rotational and vibrational energy partitioned in HCl are evaluated to be 1.7 ± 0.3 and 8.8 ± 1.9 kcal/mol, respectively. The CO appearance indicates that HCl may be eliminated through a five-center mechanism accompanied with three-body dissociation of C2H2, HCl, and CO. A four-center mechanism forming HCl and CH3CHCO also contributes to the HCl fragment with a feature of rotational bimodality. However, the probability for the HCl contribution from the hot Cl reaction is negligible. The reaction with CH4 is carried out to evaluate the HCl and Cl elimination rate constants. © 2010 Elsevier B.V. All rights reserved.

Veerakumar, P, Thanasekaran P, Lin K-C, Liu S-B.  2017.  Biomass Derived Sheet-like Carbon/Palladium Nanocomposite: An Excellent Opportunity for Reduction of Toxic Hexavalent Chromium. ACS Sustainable Chemistry and Engineering. 5:5302-5312., Number 6 AbstractWebsite

Palladium nanoparticles (Pd NPs) immobilized on a garlic skin-derived activated carbons (GACs) is reported. The morphology, structure, surface compositions, and textural properties of the GACs and Pd@GAC catalyst were investigated by a variety of physicochemical characterization techniques, which revealed a dispersion of Pd NPs with average particle size of ca. 21 nm on sheet-like graphitized GACs with surface areas and pore volumes as high as 1836 m2 g-1 and 0.89 cm3 g-1, respectively. As a result, the Pd@GAC with a Pd loading of ca. 1-2 wt% exhibited superior activity for catalytic reduction of toxic Cr(VI) to Cr(III) surpassing most metal-based catalysts reported in the literature. As evidenced by a comprehensive UV-vis spectrophotometric study, the eco-friendly Pd@GAC catalyst reported herein, which can be facilely prepared with biowaste feedstocks, also showed excellent catalytic performances for efficient reduction of Cr(VI) with extraordinary stability and recyclability over at least five repeated catalytic test cycles. © 2017 American Chemical Society.

Liu, C-Y, Tsai M-T, Tsai P-Y, Liu Y-T, Chen SY, Chang AHH, Lin K-C.  2011.  Gas-phase photodissociation of CH3CHBrCOCl at 248 nm: Detection of molecular fragments by time-resolved FT-IR spectroscopy. ChemPhysChem. 12:206-216., Number 1 AbstractWebsite

By employing time-resolved Fourier transform infrared emission spectroscopy, the fragments HCl (v=1-3), HBr (v=1), and CO (v=1-3) are detected in one-photon dissociation of 2-bromopropionyl chloride (CH3CHBrCOCl) at 248 nm. Ar gas is added to induce internal conversion and to enhance the fragment yields. The time-resolved high-resolution spectra of HCl and CO were analyzed to determine the rovibrational energy deposition of 10.0A ±0.2 and 7.4A ±0.6 kcal mol-1, respectively, while the rotational energy in HBr is evaluated to be 0.9A ±0.1 kcal mol-1. The branching ratio of HCl(v>0)/HBr(v>0) is estimated to be 1:0.53. The bond selectivity of halide formation in the photolysis follows the same trend as the halogen atom elimination. The probability of HCl contribution from a hot Cl reaction with the precursor is negligible according to the measurements of HCl amount by adding an active reagent, Br2, in the system. The HCl elimination channel under Ar addition is verified to be slower by two orders of magnitude than the Cl elimination channel. With the aid of ab initio calculations, the observed fragments are dissociated from the hot ground state CH3CHBrCOCl. A two-body dissociation channel is favored leading to either HCl+CH3CBrCO or HBr+CH2CHCOCl, in which the CH 3CBrCO moiety may further undergo secondary dissociation to release CO. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Veerakumar, P, Thanasekaran P, Lin K-C, Liu S-B.  2017.  Well-dispersed rhenium nanoparticles on three-dimensional carbon nanostructures: Efficient catalysts for the reduction of aromatic nitro compounds. Journal of Colloid and Interface Science. 506:271-282. AbstractWebsite

Rhenium nanoparticles (ReNPs) supported on ordered mesoporous carbon (OMC) as a catalyst (Re/OMC) through a solvent-evaporation induced self-assembly (ELSA) method were prepared. The synthesized heterogonous catalyst was fully characterized using X-ray diffraction, field emission transmission electron microscopy, N2 sorption, metal dispersion, thermogravimetric analysis, Raman, Fourier-transform infrared, and X-ray photon spectroscopies. In addition, the catalyst was applied to reduce the aromatic nitro compounds (ANCs) for the first time in aqueous media and the reactions were monitored by following the intensity changes in the UV–vis absorption spectra with respect to time. This method provides the advantages of obtaining a high rate constant (k), green reaction conditions, simple methodology, easy separation and easy workup procedures. Moreover, the catalyst can be easily recovered by centrifugation, recycled several times and reused without any loss of activity. The higher activity of this catalyst was attributed to higher dispersion and smaller particle size of ReNPs as observed from FE-TEM and XRD results. © 2017