Biomass Derived Sheet-like Carbon/Palladium Nanocomposite: An Excellent Opportunity for Reduction of Toxic Hexavalent Chromium

Citation:
Veerakumar, P, Thanasekaran P, Lin K-C, Liu S-B.  2017.  Biomass Derived Sheet-like Carbon/Palladium Nanocomposite: An Excellent Opportunity for Reduction of Toxic Hexavalent Chromium. ACS Sustainable Chemistry and Engineering. 5:5302-5312., Number 6

Abstract:

Palladium nanoparticles (Pd NPs) immobilized on a garlic skin-derived activated carbons (GACs) is reported. The morphology, structure, surface compositions, and textural properties of the GACs and Pd@GAC catalyst were investigated by a variety of physicochemical characterization techniques, which revealed a dispersion of Pd NPs with average particle size of ca. 21 nm on sheet-like graphitized GACs with surface areas and pore volumes as high as 1836 m2 g-1 and 0.89 cm3 g-1, respectively. As a result, the Pd@GAC with a Pd loading of ca. 1-2 wt% exhibited superior activity for catalytic reduction of toxic Cr(VI) to Cr(III) surpassing most metal-based catalysts reported in the literature. As evidenced by a comprehensive UV-vis spectrophotometric study, the eco-friendly Pd@GAC catalyst reported herein, which can be facilely prepared with biowaste feedstocks, also showed excellent catalytic performances for efficient reduction of Cr(VI) with extraordinary stability and recyclability over at least five repeated catalytic test cycles. © 2017 American Chemical Society.

Notes:

cited By 10

Website