Highly stable ruthenium nanoparticles on 3D mesoporous carbon: An excellent opportunity for reduction reactions

Citation:
Veerakumar, P, Dhenadhayalan N, Lin K-C, Liu S-B.  2015.  Highly stable ruthenium nanoparticles on 3D mesoporous carbon: An excellent opportunity for reduction reactions. Journal of Materials Chemistry A. 3:23448-23457., Number 46

Abstract:

Carbon mesoporous materials (CPMs) have great potential in the field of heterogeneous catalysis. Highly dispersed ruthenium nanoparticles (RuNPs) embedded in three dimensional (3D) CPMs as catalysts with a high surface area (1474 m2 g-1) were prepared by microwave-thermal reduction processes. Characterization technologies including X-ray diffraction (XRD), N2 adsorption/desorption isotherm measurements, field emission transmission electron microscopy (FE-TEM), thermogravimetric analysis (TGA), hydrogen temperature-programmed reduction (H2-TPR), Raman spectroscopy and 13C solid state cross polarization and magic angle spinning (13C CP/MAS) NMR spectroscopy were utilized to scrutinize the catalysts. It was revealed that the Ru/CPM catalysts exhibited a highly ordered 3D mesoporous structure and a large surface area and were widely used as catalysts for reduction reactions. Reduction of p-nitroaniline (p-NA) and crystal violet (CV) using NaBH4 with the use of this catalyst was studied by means of UV-vis spectroscopy. Here, NaBH4 acts as a hydrogen donor. This catalyst shows an excellent catalytic activity towards reduction of p-NA and CV dye at room temperature. Due to the promising properties of CPMs, they can be utilized to fabricate 3D carbon-based materials for a variety of novel applications. © The Royal Society of Chemistry 2015.

Notes:

cited By 10

Website