Coauthored Publications with: Lin

Book

Lin, KC, Kleiber PD.  2007.  Gas Phase Molecular Reaction and Photodissociation Dynamics. India. : Transworld Research Network Abstract

n/a

Conference Paper

Palazzetti, F, Lombardi A, Nakamura M, Yang S-J, Kasai T, Lin K-C, Tsai P-Y, Che D-C.  2016.  Rotational state-selection and alignment of chiral molecules by electrostatic hexapoles. AIP Conference Proceedings. 1790 Abstract

Electrostatic hexapoles are revealed as a powerful tool in the rotational state-selection and alignment of molecules to be utilized in beam experiments on collisional and photoinitiated processes. In the paper, we report results on the application of the hexapolar technique on the recently studied chiral molecules propylene oxide, 2-butanol and 2-bromobutane, to be investigated in selective photodissociation and enantiomeric discrimination. © 2016 Author(s).

Kasai, T, Muthiah B, Lin K-C.  2017.  Role of cooperative network interaction in transition region of roaming reactions: Non-equilibrium steady state vs. thermal equilibrium reaction scheme. AIP Conference Proceedings. 1906 Abstract

This paper proposes a new type of roaming mechanism. We find a signature of trajectory with chaotic behavior in the action-angle diagram of the H + H2 reaction on a LEP surface, namely the trajectory is found to be very sensitive to the initial angle variable which corresponds to the phase of the H2 vibration. The trajectory pattern switches from the direct to the complex forming mechanism, and vice versa, in the angle range (0 ∼ π). In the complex forming angle range, trajectories switch from reactive to non-reactive randomly and suddenly, as the result, we cannot predict the collision pattern from the initial conditions. Therefore, we may classify such trajectory as a new type of roaming with chaotic behavior, and it is different from the ordinary trajectory with deterministic behavior. This chaotic behavior could be due cooperative nearby network interaction (CNN effect). We also suggest that the KPP (Kolmogorow-Petrovsky-Piskounov) equation is useful to estimate the density gradient of the activated reagents, so that one can evaluate the branching ratio to various exit channels, such as triple fragmentation, tight transition state, or the roaming channel with the aid of the present classical trajectory calculation. © 2017 Author(s).

Palazzetti, F, Lombardi A, Yang S-J, Nakamura M, Kasai T, Lin K-C, Che D-C, Tsai P-Y.  2016.  Stereodirectional photodynamics: Experimental and theoretical perspectives. AIP Conference Proceedings. 1790 Abstract

Hexapole oriented 2-bromobutane is photodissociated and detected by a slice-ion-imaging technique at 234 nm. The laser wavelength corresponds to the C - Br bond breaking with emission of a Br atom fragment in two accessible fine-structure states: the ground state Br (2P3/2) and the excited state Br (2P1/2), both observable separately by resonance-enhanced multiphoton ionization (REMPI). Orientation is evaluated by time-of-flight measurements combined with slice-ion-imaging. © 2016 Author(s).

Lin, K-C, Nakamura M, Yang, S. J, Kasai T, Che D-C, Lombardi A, Palazzetti F, Aquilanti V.  2017.  Angular distribution of bromine atomic photofragment in oriented 2-bromobutane via hexapole state selector. AIP Conference Proceedings. 1906 Abstract

In this work, an asymmetric top molecule 2-bromobutane has been successfully oriented by using hexapole state selector combined with orientation field, followed by detection of the bromine atomic photofragment distribution in the photolysis. The photofragment is produced in both the ground Br (2P3/2) and the excited Br (2P1/2) electronic states and both channels are studied by the slice imaging technique, revealing new features in the stereodynamic vectorial properties with respect to previous investigations on non-oriented molecules. © 2017 Author(s).

Lin, K-C, Tsai P-Y, Chao M-H, Kasai T, Lombardi A, Palazzetti F, Aquilanti V.  2015.  Photodissociation of methyl formate: Conical intersections, roaming and triple fragmentation. AIP Conference Proceedings. 1702 Abstract

The photodissociation channels of methyl formate have been extensively investigated by two different advanced experimental techniques, ion imaging and Fourier-Transform-Infrared emission spectroscopy, combined with quantum chemical calculations and molecular dynamics simulations. Our aim is to characterize the role of alternative routes to the conventional transition-state mediated pathway: the roaming and the triple fragmentation processes. The photolysis experiments, carried out at a range of laser wavelengths in the vicinity of the triple fragmentation threshold, beside the simulation of large bunches of classical trajectories with different initial conditions, have shown that both mechanisms share a common path that involves a conical intersection during the relaxation process from the electronic excited state S1 to the ground state S0. © 2015 AIP Publishing LLC.

Lin, K-C.  2014.  Evanescent wave cavity ring-down spectroscopy in application to chemical and biological sensing. Laser Science, LS 2014. Abstract

Evanescent wave cavity ring-down absorption spectroscopy is applied to investigate thermodynamics, kinetics, orientation of the substrates on the surface, probe critical hemimicelle concentration of surfactants, and examine interaction and binding kinetics of DNA strands. © 2014 OSA.

Kasai, T, Che D-C, Tsai P-Y, Lin K-C, Palazzetti F, Aquilanti V.  2015.  Stereodynamics: From elementary processes to macroscopic chemical reactions. AIP Conference Proceedings. 1702 Abstract

This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed. © 2015 AIP Publishing LLC.

Journal Article

Li, H-K, Tsai P-Y, Hung K-C, Kasai T, Lin K-C.  2015.  Communication: Photodissociation of CH3CHO at 308 nm: Observation of H-roaming, CH3-roaming, and transition state pathways together along the ground state surface. Journal of Chemical Physics. 142, Number 4 AbstractWebsite

Following photodissociation of acetaldehyde (CH3CHO) at 308 nm, the CO(v = 1-4) fragment is acquired using time-resolved Fourier-transform infrared emission spectroscopy. The CO(v = 1) rotational distribution shows a bimodal feature; the low- and high-J components result from H-roaming around CH3CO core and CH3-roaming around CHO radical, respectively, in consistency with a recent assignment by Kable and co-workers (Lee et al., Chem. Sci. 5, 4633 (2014)). The H-roaming pathway disappears at the CO(v 2) states, because of insufficient available energy following bond-breaking of H + CH3CO. By analyzing the CH4 emission spectrum, we obtained a bimodal vibrational distribution; the low-energy component is ascribed to the transition state (TS) pathway, consistent with prediction by quasiclassical trajectory calculations, while the high-energy component results from H- and CH3-roamings. A branching fraction of H-roaming/CH3-roaming/TS contribution is evaluated to be (8% ± 3%)/(68% ± 10%)/(25% ± 5%), in which the TS pathway was observed for the first time. The three pathways proceed concomitantly along the electronic ground state surface. © 2015 AIP Publishing LLC.

Chang, C-L, Tsai P-Y, Chang Y-P, Lin K-C.  2012.  Interfacial electron transfer from CdSe/ZnS quantum dots to TiO 2 nanoparticles: Size dependence at the single-molecule level. ChemPhysChem. 13:2711-2720., Number 11 AbstractWebsite

Electron transfer (ET) kinetics of CdSe/ZnS core/shell quantum dots (QDs) on bare coverslips and a TiO 2 nanoparticle-coated thin film has been investigated at the single-molecule level. The QDs prepared have three different diameters of 3.6, 4.6, and 6.4 nm. The trajectories of fluorescence intensity are acquired with respect to the arrival time. The on-time events and subsequent fluorescence lifetimes are shorter with decreasing size. Given the lifetime measurements for QDs on glass and TiO 2, the rate constant of ET from QDs to TiO 2 may be determined to be 1.3×10 7, 6.0×10 6, and 4.7×10 6 s -1 for the increasing sizes of the QDs. The plot of on-time probability density versus arrival time is characterized by power-law statistics in the short time region and a bending tail in the long time region. Marcus's ET model is employed to satisfactorily fit the bending tail behavior and to further calculate the ET rate constants. The theoretical counterparts for the different sizes are 1.4×10 7, 6.4×10 6, and 1.9×10 6 s -1, showing good agreement with the experimental results. Going dotty: Electron transfer kinetics of CdSe/ZnS core/shell quantum dots (QDs) on bare coverslips and on TiO 2 nanoparticle coated thin films have been investigated at the single-molecule level. As the size of the QDs changes, the shift in the valence band (VB) energy is less significant than the shift in the conduction band (CB) energy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Tsai, P-Y, Che D-C, Nakamura M, Lin K-C, Kasai T.  2010.  Orientation dependence in the four-atom reaction of OH + HBr using the single-state oriented OH radical beam. Physical Chemistry Chemical Physics. 12:2532-2534., Number 11 AbstractWebsite

The orientation dependence for the Br atom formation in the reaction of the oriented OH radicals with HBr molecules at 0.26 eV collision energy has been observed for the first time using the hexapole electric field, and we found that the reaction cross-section for O-end attack is more favorable than that for H-end attack by a factor of 3.4 ± 2.3. © the Owner Societies.

Lin, K-C, Tsai P-Y, Chao M-H, Nakamura M, Kasai T, Lombardi A, Palazzetti F, Aquilanti V.  2018.  Roaming signature in photodissociation of carbonyl compounds. International Reviews in Physical Chemistry. 37:217-258., Number 2 AbstractWebsite

An alternative to the transition state (TS) pathway, the roaming route, which bypasses the minimum energy path but produces the same molecular products, was recently found in photodissociation dynamics. This account describes signatures of roaming in photodissociation of the carbonyl compounds, specifically methyl formate and aliphatic aldehydes. Methyl formate was promoted to the excited state, followed by internal conversion via a conical intersection. Then, the energetic precursor dissociated to fragments which proceeded along either TS or roaming path. In contrast to the lack of a roaming saddle point found in methyl formate, the structure of the roaming saddle point for each of a series of aliphatic aldehydes comprises two moieties that are weakly bound at a distance. As its size increases, the energy difference between the TS barrier and the roaming saddle point increases and the roaming pathway becomes increasingly dominant. Experimentally, the rotational-level dependence of the roaming route was measured with ion imaging, while the vibrational-state dependence was observed with time-resolved Fourier-transform infrared emission spectroscopy. The roaming signature was verified theoretically by quasi-classical trajectory (QCT) calculations. As an alternative to the QCT method, a multi-center impulsive model was developed to simulate the roaming scalar and vector properties. © 2018 Informa UK Limited, trading as Taylor & Francis Group.

Dhenadhayalan, N, Lin K-C, Suresh R, Ramamurthy P.  2016.  Unravelling the Multiple Emissive States in Citric-Acid-Derived Carbon Dots. Journal of Physical Chemistry C. 120:1252-1261., Number 2 AbstractWebsite

Steady-state and time-resolved fluorescence spectroscopy techniques were used to probe multifluorescence resulting from citric-acid-derived carbon dots (C-dots). Commonly, both carboxyl-/amine-functionalized C-dots exhibit three distinct emissive states corresponding to the carbon-core and surface domain. The shorter-wavelength fluorescence (below 400 nm) originates from the carbon-core absorption band at ∼290 nm, whereas the fluorescence (above 400 nm) is caused by two surface states at ∼350 and 385 nm. In addition to three emissive states, a molecular state was also found in amine-functionalized C-dots. Time-resolved emission spectra (TRES) and time-resolved area normalized emission spectra (TRANES) were analyzed to confirm the origin of excitation wavelength-dependent fluorescence of C-dots. The surface functional groups on the C-dots are capable of regulating the electron transfer to affect the multifluorescence behavior. The electron transfer takes place from the carbon-core to surface domain by the presence of -COOH on the surface and vice versa for the case of -NH2 present on the surface. To the best of our knowledge, this is the first report that the multiemissive states are probed in C-dots systems using TRES and TRANES analyses, and related fluorescence mechanisms are verified clearly. © 2015 American Chemical Society.

Tsai, P-Y, Hung K-C, Li H-K, Lin K-C.  2014.  Photodissociation of propionaldehyde at 248 nm: Roaming pathway as an increasingly important role in large aliphatic aldehydes. Journal of Physical Chemistry Letters. 5:190-195., Number 1 AbstractWebsite

Time-resolved Fourier transform infrared emission spectroscopy is employed in the photolysis of propionaldehyde (CH3CH2CHO) at 248 nm to characterize the role of the roaming pathway. High-resolution spectra of CO are analyzed to yield a single Boltzmann rotational distribution for each vibrational level (ν = 1-4) with small rotational and large vibrational energy disposals. A roaming saddle point is found containing two far separated moieties of HCO and CH3CH2 with a weak interaction between them. Quasiclassical trajectory calculations on this configuration yield the CO energy flow behavior, consistent with the findings. The rate constant along the roaming pathway is evaluated to be larger by >1-2 orders of magnitude than those along tight transition state or three-body dissociation pathways. This work implies that the roaming mechanism plays an increasingly important role in aliphatic aldehydes as the molecular size becomes larger. © 2013 American Chemical Society.

Wu, C-C, Lin H-C, Chang Y-B, Tsai P-Y, Yeh Y-Y, Fan H, Lin K-C, Francisco JS.  2011.  Br 2 molecular elimination in photolysis of (COBr) 2 at 248 nm by using cavity ring-down absorption spectroscopy: A photodissociation channel being ignored. Journal of Chemical Physics. 135, Number 23 AbstractWebsite

A primary dissociation channel of Br 2 elimination is detected following a single-photon absorption of (COBr) 2 at 248 nm by using cavity ring-down absorption spectroscopy. The technique contains two laser beams propagating in a perpendicular configuration. The tunable laser beam along the axis of the ring-down cell probes the Br 2 fragment in the B 3Π + ou-X 1Σ g + transition. The measurements of laser energy- and pressure-dependence and addition of a Br scavenger are further carried out to rule out the probability of Br 2 contribution from a secondary reaction. By means of spectral simulation, the ratio of nascent vibrational population for v = 0, 1, and 2 levels is evaluated to be 1:(0.65 ± 0.09):(0.34 ± 0.07), corresponding to a Boltzmann vibrational temperature of 893 ± 31 K. The quantum yield of the ground state Br 2 elimination reaction is determined to be 0.11 ± 0.06. With the aid of ab initio potential energy calculations, the pathway of molecular elimination is proposed on the energetic ground state (COBr) 2 via internal conversion. A four-center dissociation mechanism is followed synchronously or sequentially yielding three fragments of Br 2 + 2CO. The resulting Br 2 is anticipated to be vibrationally hot. The measurement of a positive temperature effect supports the proposed mechanism. © 2011 American Institute of Physics.

Nakamura, M, Palazzetti F, Tsai P-Y, Lin K-C, Kasai T, Che D-C, Lombardi A, Aquilanti V.  2019.  Vectorial imaging of the photodissociation of 2-bromobutane oriented: Via hexapolar state selection. Physical Chemistry Chemical Physics. 21(26):14164-14172. AbstractWebsite

Molecular orientation techniques are becoming available in the study of elementary chemical processes, in order to highlight those structural and dynamical properties that would be concealed by random rotational motions. Recently successful orientation was achieved for asymmetric-top and chiral molecules of much larger complexity than hitherto. In this work, we report and discuss the correlation between the vectors' photofragment recoil velocity v, transition dipole moment μ, and permanent dipole moment d in a dissociation experiment on hexapole oriented 2-bromobutane, photoinitiated by a linearly polarized laser. The sliced ion images of the Br∗(2P1/2) and Br(2P3/2) photofragments were acquired at 234.0 and 254.1 nm, respectively, by a (2 + 1) resonance-enhanced multiphoton ionization technique. A detailed analysis of the sliced ion images obtained at a tilting angle 45° of laser polarization provides information on the correlation of the three vectors, which are confined by two polar angles α and χ and one azimuthal angle φμd in the recoil frame. The sliced ion images of Br fragments eliminated individually from the enantiomers at 254.1 nm yield an asymmetric factor close to zero; for this reason the photofragment angular distributions do not show significant differences. The elimination of the Br∗ fragment at 234.0 nm is mainly correlated with a parallel transition, giving rise to a large anisotropy parameter of 1.85, and thus can be considered as a single state excitation. The resulting recoil frame angles are optimized to 163° ± 8° and 164° ± 1° for α and χ, respectively, whereas φμd is approaching 0° for the best fit. Since for the present molecule, the three vectors have an only slight spatial arrangement, the photofragment angular distributions of the two enantiomers do not show appreciable differences. Theoretical and computational simulations provide us the basis to state that oriented enantiomers can be discriminated on-the-fly in photodissociation processes even initiated by non-circularly polarized light, provided that the three vectors encountered above have specific three-dimensional arrangements. The fact that Br fragment elimination involves a multi-potential dissociation carries uncertainties in theoretical estimates of the vector direction. Therefore, this work represents a preliminary but significant step on the road to chiral discrimination on-the-fly, which is shown to be best propitiated in molecules where vectors are far from having degenerate mutual angular directions. © 2019 the Owner Societies.

Lin, C.-H., WCLLKCSMSML-XK-.  2020.  Non-invasive and time-dependent blood-sugar monitoring via breath-derived CO2 correlation using gas chromatograph with a milli-whistle gas analyze. AbstractWebsite

A clear and positive correlation between the CO2 concentration and the blood-sugar level has been observed via a noninvasive and time-dependent monitoring of CO2 concentration from human breath, which is carried out by using a homemade gas chromatography (GC)/milli-whistle compact analyzer. The time-dependent sampling of the CO2 concentration correlated between 5.0 to 5.6% (1% = 104 ppm) in accordance with blood-sugar level variations of 80 to 110 mg/dL. The analytical method results in a rapid, continuous and non-invasive determination of blood-sugar level via measurement of the CO2 concentration exhaled from the lungs.

Veerakumar, P, Thanasekaran P, Lin K-C, Liu S-B.  2017.  Biomass Derived Sheet-like Carbon/Palladium Nanocomposite: An Excellent Opportunity for Reduction of Toxic Hexavalent Chromium. ACS Sustainable Chemistry and Engineering. 5:5302-5312., Number 6 AbstractWebsite

Palladium nanoparticles (Pd NPs) immobilized on a garlic skin-derived activated carbons (GACs) is reported. The morphology, structure, surface compositions, and textural properties of the GACs and Pd@GAC catalyst were investigated by a variety of physicochemical characterization techniques, which revealed a dispersion of Pd NPs with average particle size of ca. 21 nm on sheet-like graphitized GACs with surface areas and pore volumes as high as 1836 m2 g-1 and 0.89 cm3 g-1, respectively. As a result, the Pd@GAC with a Pd loading of ca. 1-2 wt% exhibited superior activity for catalytic reduction of toxic Cr(VI) to Cr(III) surpassing most metal-based catalysts reported in the literature. As evidenced by a comprehensive UV-vis spectrophotometric study, the eco-friendly Pd@GAC catalyst reported herein, which can be facilely prepared with biowaste feedstocks, also showed excellent catalytic performances for efficient reduction of Cr(VI) with extraordinary stability and recyclability over at least five repeated catalytic test cycles. © 2017 American Chemical Society.

Dhenadhayalan, N, Lin K-C.  2015.  Chemically Induced Fluorescence Switching of Carbon-Dots and Its Multiple Logic Gate Implementation. Scientific Reports. 5 AbstractWebsite

Investigations were carried out on the carbon-dots (C-dots) based fluorescent off - on (Fe 3 €‰+ €‰ - S 2 O 3 2 ') and on - off (Zn 2 €‰+ €‰ - PO 4 3 ') sensors for the detection of metal ions and anions. The sensor system exhibits excellent selectivity and sensitivity towards the detection of biologically important Fe 3 €‰+ €‰, Zn 2 €‰+ €‰ metal ions and S 2 O 3 2 ', PO 4 3 ' anions. It was found that the functional group on the C-dots surface plays crucial role in metal ions and anions detection. Inspired by the sensing results, we demonstrate C-dots based molecular logic gates operation using metal ions and anions as the chemical input. Herein, YES, NOT, OR, XOR and IMPLICATION (IMP) logic gates were constructed based on the selection of metal ions and anions as inputs. This carbon-dots sensor can be utilized as various logic gates at the molecular level and it will show better applicability for the next generation of molecular logic gates. Their promising properties of C-dots may open up a new paradigm for establishing the chemical logic gates via fluorescent chemosensors.

Chao, M-S, Tornero J, Lin KC, Stolte S, González Ureña A.  2013.  Decoherence cross-section in NO + Ar collisions: Experimental results and a simple model. Journal of Physical Chemistry A. 117:8119-8125., Number 34 AbstractWebsite

Quantum decoherence can be viewed as the mechanism responsible for the quantum-to-classical transition as the initially prepared quantum state interacts with its environment in an irreversible manner. One of the most common mechanisms responsible for the macroscopically observed decoherence involves collisions of an atom or molecule, initially prepared in a coherent superposition of states, with gas particles. In this work, a coherent superposition of quantum internal states of NO molecules is prepared by the interaction between the molecule with both a static and a radiofrequency electric field. Subsequently, NO + Ar collision decoherence experiments are investigated by measuring the loss of coherence as a function of the number of collisions. Data analysis using a model based on the interaction potential of the collisional partners allowed to unravel the molecular mechanism responsible for the loss of coherence in the prepared NO quantum superposition of internal states. The relevance of the present work relies on several aspects. On the one hand, the use of radio-waves introduces a new way for the production of coherent beams. On the other hand, the employed methodology could be useful in investigating the Stereodynamics of chemical reactions with coherent reagents. © 2013 American Chemical Society.

Chen, S-Y, Tsai P-Y, Lin H-C, Wu C-C, Lin K-C, Sun BJ, Chang AHH.  2011.  I2 molecular elimination in single-photon dissociation of CH2I2 at 248 nm by using cavity ring-down absorption spectroscopy. Journal of Chemical Physics. 134, Number 3 AbstractWebsite

Following single-photon dissociation of CH2I2 at 248 nm, I2 molecular elimination is detected by using cavity ring-down absorption spectroscopy. The technique comprises two laser beams propagating in a perpendicular configuration, in which a tunable laser beam along the axis of the ring-down cell probes the I2 fragment in the B 3 ou + - X 1 g + transition. The nascent vibrational populations for v 0, 1, and 2 levels are obtained with a population ratio of 1:(0.65 0.10):(0.30 0.05), corresponding to a Boltzmann-like vibrational temperature of 544 73 K. The quantum yield of the ground state I2 elimination reaction is determined to be 0.0040 0.0025. With the aid of ab initio potential energy calculations, the pathway of molecular elimination is proposed on the energetic ground state CH2I2 via internal conversion, followed by asynchronous three-center dissociation. A positive temperature effect supports the proposed mechanism. © 2011 American Institute of Physics.

Srinivasan, V, Jhonsi MA, Lin K-C, Ananth DA, Sivasudha T, Narayanaswamy R, Kathiravan A.  2019.  Pyrene-based prospective biomaterial: In vitro bioimaging, protein binding studies and detection of bilirubin and Fe3+. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 211 AbstractWebsite

Herein, we have meticulously derived the nanosized fluorescent aggregates from pyrene Schiff base (PS) in DMSO:water (10:90) ratio. The aggregation property of PS molecule was characterized by SEM and TEM measurements, revealed the aggregated particles are in spherical shape with ~3 nm in size. Moreover, aggregates exhibit a high fluorescence quantum yield (48%) which was effectively used for the in vitro bioimaging of two different cancer cells such as A549 and MCF-7 cells in which it exhibiting excellent biocompatibility. Further, it was estimated the capability of twofold acridine orange/ethidium bromide (AO/EB) staining to identify the apoptotic associated changes in cancer cells. Additionally, the aggregates were successfully demonstrated as a luminescent probe for the perceptive biomolecule detection of bilirubin. On the other hand, the PS molecule was successfully utilized for protein binding and metal ion sensing studies. The interaction of bovine serum albumin (BSA) with PS molecule in DMSO was using fluorescence spectroscopic method and nature of interaction was also confirmed through molecular docking analysis. The PS molecule also acts as an excellent sensor for biologically important Fe3+ ion with detection limit of 336 nM. Overall, PS molecule can be a prospective material in biological field both in solution as well as aggregated forms. © 2019 Elsevier B.V.

Veerakumar, P, Tharini J, Ramakrishnan M, Panneer Muthuselvam I, Lin K-C.  2017.  Graphene Oxide Nanosheets as An Efficient and Reusable Sorbents for Eosin Yellow Dye Removal from Aqueous Solutions. ChemistrySelect. 2:3598-3607., Number 13 AbstractWebsite

In this study, 2D graphene oxide nanosheets (GONS) were synthesized and characterized by XRD, Raman, SEM, FE-SEM, TEM, XPS, TGA, UV-vis and FTIR spectral techniques. The efficiency of eosin yellow (EY) dye adsorption on the GONS under various experimental parameters such as contact time, pH and temperature was investigated. Adsorption kinetic data were characterized appropriately using pseudo second-order-kinetics and intraparticle diffusion methods. Free energy of adsorption (ΔG0), enthalpy (ΔH0), entropy (ΔS0) changes, activation energy and Arrhenius factors were also calculated. The endothermic and spontaneous nature of the adsorption process was confirmed by the positive value of the enthalpy change (ΔH0) and the negative value of free energy change (ΔG0). The adsorption mechanism was investigated by FTIR spectra of GONS before and after adsorption of EY dye molecules. The remarkable adsorption capacity of EY onto the GONS can be attributed to the various adsorption interaction mechanisms such as hydrogen bonding, π-π electron, and electrostatic interactions. The maximum adsorption capacity for EY was calculated to be 217.33 mg g-1. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Veerakumar, P, Dhenadhayalan N, Lin K-C, Liu S-B.  2015.  Highly stable ruthenium nanoparticles on 3D mesoporous carbon: An excellent opportunity for reduction reactions. Journal of Materials Chemistry A. 3:23448-23457., Number 46 AbstractWebsite

Carbon mesoporous materials (CPMs) have great potential in the field of heterogeneous catalysis. Highly dispersed ruthenium nanoparticles (RuNPs) embedded in three dimensional (3D) CPMs as catalysts with a high surface area (1474 m2 g-1) were prepared by microwave-thermal reduction processes. Characterization technologies including X-ray diffraction (XRD), N2 adsorption/desorption isotherm measurements, field emission transmission electron microscopy (FE-TEM), thermogravimetric analysis (TGA), hydrogen temperature-programmed reduction (H2-TPR), Raman spectroscopy and 13C solid state cross polarization and magic angle spinning (13C CP/MAS) NMR spectroscopy were utilized to scrutinize the catalysts. It was revealed that the Ru/CPM catalysts exhibited a highly ordered 3D mesoporous structure and a large surface area and were widely used as catalysts for reduction reactions. Reduction of p-nitroaniline (p-NA) and crystal violet (CV) using NaBH4 with the use of this catalyst was studied by means of UV-vis spectroscopy. Here, NaBH4 acts as a hydrogen donor. This catalyst shows an excellent catalytic activity towards reduction of p-NA and CV dye at room temperature. Due to the promising properties of CPMs, they can be utilized to fabricate 3D carbon-based materials for a variety of novel applications. © The Royal Society of Chemistry 2015.

Fan, H, Tsai P-Y, Lin K-C, Lin C-W, Yan C-Y, Yang S-W, Chang AHH.  2012.  Molecular elimination of Br2 in photodissociation of CH 2BrC(O)Br at 248 nm using cavity ring-down absorption spectroscopy. Journal of Chemical Physics. 137, Number 21 AbstractWebsite

The primary elimination channel of bromine molecule in one-photon dissociation of CH2BrC(O)Br at 248 nm is investigated using cavity ring-down absorption spectroscopy. By means of spectral simulation, the ratio of nascent vibrational population in v 0, 1, and 2 levels is evaluated to be 1:(0.5 ± 0.1):(0.2 ± 0.1), corresponding to a Boltzmann vibrational temperature of 581 ± 45 K. The quantum yield of the ground state Br2 elimination reaction is determined to be 0.24 ± 0.08. With the aid of ab initio potential energy calculations, the obtained Br2 fragments are anticipated to dissociate on the electronic ground state, yielding vibrationally hot Br2 products. The temperature-dependence measurements support the proposed pathway via internal conversion. For comparison, the Br2 yields are obtained analogously from CH3CHBrC(O)Br and (CH3)2CBrC(O)Br to be 0.03 and 0.06, respectively. The trend of Br2 yields among the three compounds is consistent with the branching ratio evaluation by Rice-Ramsperger-Kassel-Marcus method. However, the latter result for each molecule is smaller by an order of magnitude than the yield findings. A non-statistical pathway so-called roaming process might be an alternative to the Br2 production, and its contribution might account for the underestimate of the branching ratio calculations. © 2012 American Institute of Physics.