Photodissociation of CH2BrI using cavity ring-down spectroscopy: in search of a BrI elimination channel

Citation:
Muthiah, B, Paredes-Roibás D, Kasai T, Lin K-C.  2019.  Photodissociation of CH2BrI using cavity ring-down spectroscopy: in search of a BrI elimination channel. Physical Chemistry Chemical Physics. 21(26):13943-13949.

Abstract:

Photodissociation of CH2BrI was investigated in search of unimolecular elimination of BrI via a primary channel using cavity ring-down absorption spectroscopy (CRDS) at 248 nm. The BrI spectra were acquired involving the first three ground vibrational levels corresponding to A3Π1 ← X1Σ+ transition. With the aid of spectral simulation, the BrI rotational lines were assigned. The nascent vibrational populations for v′′ = 0, 1, and 2 levels are obtained with a population ratio of 1:(0.58 ± 0.10):(0.34 ± 0.05), corresponding to a Boltzmann-like vibrational temperature of 713 ± 49 K. The quantum yield of the ground state BrI elimination reaction is determined to be 0.044 ± 0.014. The CCSD(T)//B3LYP/MIDI! method was employed to explore the potential energy surface for the unimolecular elimination of BrI from CH2BrI.

Website