Coauthored Publications with: Yeh

Journal Article

Wu, C-C, Lin H-C, Chang Y-B, Tsai P-Y, Yeh Y-Y, Fan H, Lin K-C, Francisco JS.  2011.  Br 2 molecular elimination in photolysis of (COBr) 2 at 248 nm by using cavity ring-down absorption spectroscopy: A photodissociation channel being ignored. Journal of Chemical Physics. 135, Number 23 AbstractWebsite

A primary dissociation channel of Br 2 elimination is detected following a single-photon absorption of (COBr) 2 at 248 nm by using cavity ring-down absorption spectroscopy. The technique contains two laser beams propagating in a perpendicular configuration. The tunable laser beam along the axis of the ring-down cell probes the Br 2 fragment in the B 3Π + ou-X 1Σ g + transition. The measurements of laser energy- and pressure-dependence and addition of a Br scavenger are further carried out to rule out the probability of Br 2 contribution from a secondary reaction. By means of spectral simulation, the ratio of nascent vibrational population for v = 0, 1, and 2 levels is evaluated to be 1:(0.65 ± 0.09):(0.34 ± 0.07), corresponding to a Boltzmann vibrational temperature of 893 ± 31 K. The quantum yield of the ground state Br 2 elimination reaction is determined to be 0.11 ± 0.06. With the aid of ab initio potential energy calculations, the pathway of molecular elimination is proposed on the energetic ground state (COBr) 2 via internal conversion. A four-center dissociation mechanism is followed synchronously or sequentially yielding three fragments of Br 2 + 2CO. The resulting Br 2 is anticipated to be vibrationally hot. The measurement of a positive temperature effect supports the proposed mechanism. © 2011 American Institute of Physics.

Yeh, Y-Y, Chao M-H, Tsai P-Y, Chang Y-B, Tsai M-T, Lin K-C.  2012.  Gas-phase photodissociation of CH 3COCN at 308 nm by time-resolved Fourier-transform infrared emission spectroscopy. Journal of Chemical Physics. 136, Number 4 AbstractWebsite

By using time-resolved Fourier-transform infrared emission spectroscopy, the fragments of HCN(v 1, 2) and CO(v 1-3) are detected in one-photon dissociation of acetyl cyanide (CH 3COCN) at 308 nm. The S 1(A ″), 1(n O, π CO) state at 308 nm has a radiative lifetime of 0.46 ± 0.01 μs, long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of Ar collision-induced internal conversion is estimated to be (1-7) × 10 -12 cm 3 molecule -1 s -1. The measurements of O 2 dependence exclude the production possibility of these fragments via intersystem crossing. The high-resolution spectra of HCN and CO are analyzed to determine the ro-vibrational energy deposition of 81 ± 7 and 32 ± 3 kJmol, respectively. With the aid of ab initio calculations, a two-body dissociation on the energetic ground state is favored leading to HCN CH 2CO, in which the CH 2CO moiety may further undergo secondary dissociation to release CO. The production of CO 2 in the reaction with O 2 confirms existence of CH 2 and a secondary reaction product of CO. The HNC fragment is identified but cannot be assigned, as restricted to a poor signal-to-noise ratio. Because of insufficient excitation energy at 308 nm, the CN and CH 3 fragments that dominate the dissociation products at 193 nm are not detected. © 2012 American Institute of Physics.