Muthusamy, S, Sabbah A, Sabhapathy P, Chang Y-C, Billo T, Syum Z, Chen L-C, Chen K-H.
2023.
Modification of Conductive Carbon with N-Coordinated Fe−Co Dual-Metal Sites for Oxygen Reduction Reaction, 2023. ChemElectroChem. n/a(n/a):e202300272.: John Wiley & Sons, Ltd
AbstractAbstract Earth-abundant commercial conductive carbon materials are ideal electrocatalyst supports but cannot be directly utilized for single-atom catalysts owing to the lack of anchoring sites. Therefore, we employed crosslink polymerization to modify the conductive carbon surface with Fe?Co dual-site electrocatalysts for oxygen reduction reaction (ORR). First, metal-coordinated polyurea (PU) aerogels were prepared using via crosslinked polymerization at ambient temperature. Then, carbon-supported, atomically dispersed Fe?Co dual-atom sites (FeCoNC/BP) were formed by high-temperatures pyrolysis with a nitrogen source. FTIR and 13C NMR measurements showed PU linkages, while 15N NMR revealed metal?nitrogen coordination in the PU gels. Asymmetric, N-coordinated, and isolated Fe?Co active structures were found after pyrolysis using XAS and STEM. In alkaline media, FeCoNC/BP exhibited excellent ORR activity, with a E1/2 of 0.93?V vs. RHE, higher than that of Pt/C (20?%) (0.90?V), FeNC/BP (0.88?V), and CoNC/BP (0.85?V). An accelerated durability test (ADT) on FeCoNC/BP indicated good durability over 35000 cycles. FeCoNC/BP also showed moderate ORR and ADT performance in acidic media. The macro/mesoporous N-doped carbon structures enhanced the mass transport properties of the dual Fe?Co active-sites. Therefore, modifying carbon supports with nonprecious metal catalysts may be a cost-effective-strategy for sustained electrochemical energy conversion.
Kamal Hussien, M, Sabbah A, Qorbani M, Hammad Elsayed M, Quadir S, Raghunath P, Tzou D-LM, Haw S-C, Chou H-H, Thang NQ, Lin M-C, Chen L-C, Chen K-H.
2023.
Numerous defects induced by exfoliation of boron-doped g-C3N4 towards active sites modulation for highly efficient solar-to-fuel conversion, 2023. Materials Today Sustainability. 22:100359.
AbstractGraphitic carbon nitride (CN) has emerged as a highly promising material in the photocatalysis field. However, its bulk structure suffers from a lack of active sites, limiting its practical application. Herein, a boron-doped CN (BCN) was prepared by a green gas-blowing-assisted thermal polymerization and then subjected to different exfoliation processes in order to delaminate the layered structure and tune the surface-active sites. A thorough comparative study shows that thermal exfoliation creates unsaturated nitrogen sites and induces the formation of interconnected layers that act as an electron diffusion channel for better charge transport. Furthermore, the thermally exfoliated BCN is rich in structural disorders that serve as dissociation defects for photoinduced charge carriers with a low exciton binding energy of 27 meV. Experimental results supported by theoretical calculations show that the nitrogen adjacent to boron is activated by the surrounding surface amino groups and the perforated texture to serve as an active adsorption site towards CO2 and H2O. Consequently, the exfoliated BCN acts as an outstanding bifunctional photocatalyst towards CO2 reduction into CO (40.41 μmol g−1 h−1) and prominent hydrogen evolution (4740 μmol g−1 h−1, 12.2% apparent quantum yield (AQY)).