Modification of Conductive Carbon with N-Coordinated Fe−Co Dual-Metal Sites for Oxygen Reduction Reaction

Citation:
Muthusamy, S, Sabbah A, Sabhapathy P, Chang Y-C, Billo T, Syum Z, Chen L-C, Chen K-H.  2023.  Modification of Conductive Carbon with N-Coordinated Fe−Co Dual-Metal Sites for Oxygen Reduction Reaction, 2023. ChemElectroChem. n/a(n/a):e202300272.: John Wiley & Sons, Ltd

Abstract:

Abstract Earth-abundant commercial conductive carbon materials are ideal electrocatalyst supports but cannot be directly utilized for single-atom catalysts owing to the lack of anchoring sites. Therefore, we employed crosslink polymerization to modify the conductive carbon surface with Fe?Co dual-site electrocatalysts for oxygen reduction reaction (ORR). First, metal-coordinated polyurea (PU) aerogels were prepared using via crosslinked polymerization at ambient temperature. Then, carbon-supported, atomically dispersed Fe?Co dual-atom sites (FeCoNC/BP) were formed by high-temperatures pyrolysis with a nitrogen source. FTIR and 13C NMR measurements showed PU linkages, while 15N NMR revealed metal?nitrogen coordination in the PU gels. Asymmetric, N-coordinated, and isolated Fe?Co active structures were found after pyrolysis using XAS and STEM. In alkaline media, FeCoNC/BP exhibited excellent ORR activity, with a E1/2 of 0.93?V vs. RHE, higher than that of Pt/C (20?%) (0.90?V), FeNC/BP (0.88?V), and CoNC/BP (0.85?V). An accelerated durability test (ADT) on FeCoNC/BP indicated good durability over 35000 cycles. FeCoNC/BP also showed moderate ORR and ADT performance in acidic media. The macro/mesoporous N-doped carbon structures enhanced the mass transport properties of the dual Fe?Co active-sites. Therefore, modifying carbon supports with nonprecious metal catalysts may be a cost-effective-strategy for sustained electrochemical energy conversion.

Notes:

n/a

Website