Publications

User warning: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ')) ORDER BY timestamp DESC' at line 1 query: SELECT timestamp FROM views_content_cache WHERE (()) ORDER BY timestamp DESC in _db_query() (line 169 of /var/www/html/iams/project/includes/database.mysqli.inc).
Export 1790 results:
Sort by: Author Title Type [ Year  (Desc)]
2020
Tsai, P-J, Hsiao Y-F, Chen Y-C.  2020.  Quantum storage and manipulation of heralded single photons in atomic quantum memories. Phys. Rev. Research. 2(033155)Link
Kuo, M-T, Takahashi K, Lin JJ-M.  2020.  Reactions of Criegee Intermediates are Enhanced by Hydrogen-atom Relay Through Molecular Design. ChemPhysChem. 21:2056-2059.
Dhenadhayalan, N., LSK-CTA.  2020.  Recent Advances in Functionalized Carbon Dots toward the Design of Efficient Materials for Sensing and Catalysis Applications. AbstractWebsite

Since the past decade, enormous research efforts have been devoted to the detection/degradation and quantification of environmental toxic pollutants and biologically important molecules due to their ubiquitous necessity in the fields of environmental protection and human health. These fields of sensor and catalysis are advanced to a new era after emerging of nanomaterials, especially, carbon nanomaterials including graphene, carbon nanotube, carbon dots (C-dots), etc. Among them, the C-dots in the carbon family are rapidly boosted in the aspect of synthesis and application due to their superior properties of chemical and photostability, highly fluorescent with tunable, non/low-toxicity, and biocompatibility. The C-dot-based functional materials have shown great potential in sensor and catalysis fields for the detection/degradation of environmental pollutants. The major advantage of C-dots is that they can be easily prepared from numerous biomass/waste materials which are inexpensive and environment-friendly and are suitable for a developing trend of sustainable materials. This review is devoted to the recent development (since 2017) in the synthesis of biomass- and chemical-derived C-dots as well as diverse functionalization of C-dots. Their capability as a sensor and catalyst and respective mechanism are summarized. The future perspectives of C-dots are also discussed.

Veerakumar, P., SMTLASP.  2020.  Research Progress on Porous Carbon Supported Metal/Metal Oxide Nanomaterials for Supercapacitor Electrode Applications. AbstractWebsite

Recently, transition metal/metal oxides (TMMOs) decorated on porous carbons (PCs) have been intensively focused on designing rational electrode materials for the promising future specific category of electrochemical energy storage and conversion technologies. In particular, TMMO incorporation with PC structures has become very attractive in the area of supercapacitors (SCs) mainly caused by their large accessible surface areas (SSA), together with the suitable pore size distributions (PSD), high electrical conductivity, and rapid redox reactions reversibly on the surface. The transportation of ions, as well as electrons in the bulk of electrodes, is fast as a result of optimal contact between electrodes and electrolytes at the electrode-electrolyte interface, thereby generating high specific capacities (Csp) of these PCs with TMMOs. We report a survey regarding recent advances in the fabrication and synthesis of TMMOs decorated on PCs with some physical characteristics and their applications for electrochemical capacitors. Some future trends and prospects for further development of the subject nanocomposites in application to next-generation supercapacitors are discussed. © 2020 American Chemical Society.

Tso, C.-J., KLTK-C.  2020.  Roaming Dynamics and Conformational Memory in Photolysis of Formic Acid at 193 nm Using Time-resolved Fourier-transform Infrared Emission Spectroscopy. AbstractWebsite

In photodissociation of trans-formic acid (HCOOH) at 193 nm, we have observed two molecular channels of CO + H2O and CO2 + H2 by using 1 μs-resolved Fourier-transform infrared emission spectroscopy. With the aid of spectral simulation, the CO spectra are rotationally resolved for each vibrational state (v = 1–8). Each of the resulting vibrational and rotational population distributions is characteristic of two Boltzmann profiles with different temperatures, originating from either transition state pathway or OH-roaming to form the same CO + H2O products. The H2O roaming co-product is also spectrally simulated to understand the interplay with the CO product in the internal energy partitioning. Accordingly, this work has evaluated the internal energy disposal for the CO and H2O roaming products; especially the vibrational-state dependence of the roaming signature is reported for the first time. Further, given a 1 μs resolution, the temporal dependence of the CO/CO2 product ratio at v ≥ 1 rises from 3 to 10 of study, thereby characterizing the effect of conformational memory and well reconciling with the disputed results reported previously between absorption and emission methods. © 2020, The Author(s).

C.-Y.Dai, Wang W-C, Tseng C-A, Ding F-C, Chen Y-T, Chen C-C.  2020.  Spatial Confinement Approach Using Ni to Modulate Local Carbon Supply for the Growth of Uniform Transfer-Free Graphene Monolayers. J. Phys. Chem. C . 124:23094−23105.view.pdf
Vinothkumar, V., SCVLAS-M.  2020.  Sr-Doped NiO3 nanorods synthesized by a simple sonochemical method as excellent materials for voltammetric determination of quercetin. AbstractWebsite

The simple and novel surfactant-free synthesis of flower-like strontium-doped nickel oxide nanorods (SNO NRs) via a simple sonochemical co-precipitation method was used for electrochemical sensing of quercetin (QCT). The structure and morphology of the as-synthesized flower-like SNO NRs were characterized using various spectroscopic techniques. Then, CV, EIS, and DPV were used to examine their electrochemical properties. The effective loading concentration, pH, scan rate and stability of the SNO NR-modified electrodes were studied. Under optimized conditions, the electrochemical detection of QCT demonstrated a low detection potential of 0.3 V (vs. Ag/AgCl), and achieved a higher oxidation peak current compared to those of other modified electrodes in PB (pH 5.0). The voltammetric current response was found to linearly increase with an increasing concentration range from 0.01-68.53 μM, along with a low detection limit of 1.98 nM, and a high sensitivity of 2.1055 μA mM cm-2. The sensor also shows good selectivity and satisfactory recovery for real sample (apple and grape juice) analysis. © 2020 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

R.J.Mathew, Lee CP, Tseng CA, Chand PK, Huang Y-J, Chen H-T, Ho K-C, Anbalagan AK, Lee C-H, Chen Y-T.  2020.  Stoichiometry-Controlled MoxW1−xTe2 Nanowhiskers: A Novel Electrocatalyst for Pt-Free Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces . 12:34815−34824.view
Zhong, P, Liu C-H, Chen* Y-T, Yu** T-Y.  2020.  The study of HIV-1 Vpr-membrane and Vpr-hVDAC-1 interactions by Graphene Field-Effect Transistor Biosensors. ACS Applied Bio Materials. 3(9):6351-6357.
P.Zhong, C.-H.Liu, Y.-T.Chen, T.-Y.Yu.  2020.  The Study of HIV‑1 Vpr-Membrane and Vpr-hVDAC‑1 Interactions by Graphene Field-Effect Transistor Biosensors. ACS Appl. Bio Mater.. 3:6351−6357.view
Jen, HH, Chang M-S, Lin G-D, Chen YC.  2020.  Subradiance dynamics in a singly excited chirally coupled atomic chain. PHYSICAL REVIEW A. 101(023830)Link
Jen, HH, Chang M-S, Lin G-D, Chen Y-C.  2020.  Subradiance dynamics in a singly excited chirally coupled atomic chain. Phys. Rev. A. 101(2):023830.
C.-A.Tseng, K.Sahoo P, P.Lee C-, T.Lin Y-, H.Xu J-, Y.-T.Chen.  2020.  Synthesis of CoO-Decorated Graphene Hollow Nanoballs for HighPerformance Flexible Supercapacitors. ACS Appl. Mater. Interfaces . 12:40426−40432.view
Tsai, P-J, Wei Y-C, Wu B-H, Li S-X, Chen Y-C.  2020.  Theoretical study on memory-based optical converter with degenerate Zeeman states. Phys. Rev. A. 100(063843)Link
Wang, S, Lee M-W, Chuang Y-T, Scholes GD *, Hsu L-Y*.  2020.  Theory of molecular emission power spectra. I. Macroscopic quantum electrodynamics formalism. J. Chem. Phys.. 153:184102., Number 18 AbstractWebsite

n/a

  2020.  Three-dimensional zinc oxide nanostars anchored on graphene oxide for voltammetric determination of methyl parathion. AbstractWebsite

The two-step microwave method was used to synthesize zinc oxide nanostars linked to graphene oxide (GO) nanosheets. The material was used to modify a screen printed carbon electrode (SPCE) and then explored as a binder-free electrocatalyst for the electrochemical determination of methyl parathion (MP). The morphology and crystallinity of the material were characterized by various techniques. The modified SPCE shows extraordinary electrochemical performances for sensitive determination of MP. Figures of merit include (a) a wide linear dynamic range (0.03–670 μM), (b) a low detection limit (1.2 nM; at S/N = 3), (c) a comparably low working voltage (−0.69 V vs. Ag/AgCl); and (d) an excellent sensitivity (16.5 μA μM−1 cm−2) that surpasses other modified electrodes. The sensor was successfully applied to the determination of MP, even in the presence of other common electroactive interference, in (spiked) fruits and vegetables. [Figure not available: see fulltext.]. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature.

P.-K.Yang, Chou S-A, Hsu C-H, Mathew RJ, Chiang K-H, Yang J-Y, Chen Y-T.  2020.  Tin disulfide piezoelectric nanogenerators for biomechanical energy harvesting and intelligent human-robot interface applications. Nano Energy. 75:104879.view
Veerakumar, P., MCPLSS-M.  2020.  Ultrafine Bi-Sn nanoparticles decorated on carbon aerogels for electrochemical simultaneous determination of dopamine (neurotransmitter) and clozapine (antipsychotic drug). AbstractWebsite

This present study describes the synthesis of ultrafine Bi-Sn nanoparticles decorated on carbon aerogels (Bi-Sn NP/CAG) as a nanocomposite for the electrochemical simultaneous determination of dopamine (DA) and clozapine (CLZ). The typical characterization techniques, such as XRD, Raman, BET, FT-IR, TGA, XPS, and FE-SEM/TEM, showed useful insights into the crystal phase and morphology of Bi-Sn NP/CAG. Integrated Bi-Sn NP/CAG built into a cost-effective screen printed carbon electrode (SPCE) offers a high electrochemical surface area (ECSA) compared to unmodified, Bi-Sn, and CAG/SPCEs, such that it favourably allowed the binding of DA and CLZ molecules onto the surface at the Bi-Sn/CAG, which was demonstrated by cyclic and differential pulse voltammetry techniques. As a result, the DA and CLZ sensing exhibited low detection limits (DL, 4.6 and 97.6 nM (S/N = 3)), and sensitivity (3.402 and 0.4 μA μM-1 cm-2) over a wide linear range (0.02-97.59 and 0.5-2092 μM), respectively. To go a step further, the Bi-Sn NP/CAG/SPCE was applied for the simultaneous determination of DA and CLZ which featured lower DL (23.1 and 31.3 nM (S/N = 3)), and sensitivity (0.4979 and 0.04 μA μM-1 cm-2) over a wide linear range (2-182 and 10-910 μM), respectively. The selectivity for DA and CLZ in the presence of a 10-fold concentration of their potentially interfering active species was demonstrated. Finally, this sensing methodology enables the rapid electrochemical determination of the amount of DA and CLZ in a rat brain region serum sample with successful recovery outcomes. © The Royal Society of Chemistry.

Veerakumar, P., SCLAS-M.  2020.  Ultrafine gold nanoparticle embedded poly(diallyldimethylammonium chloride)-graphene oxide hydrogels for voltammetric determination of an antimicrobial drug (metronidazole). AbstractWebsite

In this work, gold nanoparticle (Au NP) decorated poly(diallyldimethylammonium chloride) (PDDA) functionalized graphene hydrogel (Au NP@PDDA/GH) nanocomposites were fabricated. The resulting materials were characterized by a variety of analytical and spectroscopic techniques. Electrochemical performances of the prepared composites were examined by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and linear sweep voltammetry (LSV). The Au NPs were decorated uniformly and densely on the GO@PDDA composite material based on the electrostatic attraction and this new hierarchical nanostructure can provide a more favourable microenvironment for electron transfer. Under the optimized conditions, the Au NP@PDDA/GH nanocomposite was used as a novel sensing probe for metronidazole (MZ) which was found to have the concentration range of 0.4-656.4 μM with a correlation coefficient (0.999, limit of detection (LOD) based on (LOD = 3k/∂) of 0.097 μM), and a sensitivity of 4.286 μA μM−1. With satisfactory selectivity, reproducibility, and stability, the nanostructure we proposed offered an alternative for electrode fabrication and MZ sensing. Au NP@PDDA/GH was also applied to the reduction of MZ and pharmacy tablets by NaBH4under ambient conditions. Thus, Au NP@PDDA/GH application provides simplicity, reliability, durability, and low cost benefits. © The Royal Society of Chemistry 2020.

Che, D.-C., NCLKAPMH-P.  2020.  UV Photodissociation of Halothane in a Focused Molecular Beam: Space-Speed Slice Imaging of Competitive Bond Breaking into Spin-Orbit-Selected Chlorine and Bromine Atoms. AbstractWebsite

A molecular beam of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) is focused by a hexapolar electrostatic field and photolyzed by UV laser radiation at 234 nm. Angular and speed distributions of chlorine and bromine photofragments emitted from halothane are measured for both spin-orbit states independently. Although the dissociation energy of the C-Cl bond is larger than that of C-Br, the relative yield of Cl to Br was found to be approximately 2. Measured speed and angular distributions of atomic fragments show distinct kinetic energy release and scattering characteristics: for bromine, observed fast and aligned fragments exhibit a signature of a direct mode of dissociation for the C-Br bond, via the electronically excited potential energy surface denoted nσ*(C-Br), of repulsive nature; for chlorine, a variation in the features is observed for the dissociation pathway through nσ*(C-Cl), from a modality similar to the bromine case, leading to fragments with appreciable kinetic energy release and pronounced directionality, to a modality involving slow products, nearly isotopically distributed. The origin of this behavior can be attributed to nonadiabatic interaction operating between the nσ*(C-Br) and nσ*(C-Cl) surfaces. These results are not only relevant for a detailed understanding of adiabatic versus diabatic coupling mechanisms in the manifold of excited states populated by photon absorption, but they also point out the possibility of selectively inducing specific dissociation pathways, even when involving energetically unfavorable outcomes, such as, in this case, the prevailing rupture of the stronger C-Cl bond against that of the weaker C-Br bond. Copyright © 2020 American Chemical Society.

2019
Nguyen, D-L, Wei C-M, Chou M-Y.  2019.  Theoretical study of quantum size effects in thin Al(100), Al(110), and Al(111) films, {MAY 1}. PHYSICAL REVIEW B. 99, Number {20} Abstract

n/a

Wei, P-C, Bhattacharya S, Liu Y-F, Liu F, He J, Tung Y-H, Yang C-C, Hsing C-R, Nguyen D-L, Wei C-M, Chou M-Y, Lai Y-C, Hung T-L, Guan S-Y, Chang C-S, Wu H-J, Lee C-H, Li W-H, Hermann RP, Chen Y-Y, Rao AM.  2019.  Thermoelectric Figure-of-Merit of Fully Dense Single-Crystalline SnSe, {MAR}. ACS OMEGA. 4:5442-5450., Number {3} Abstract

n/a