Saranin, AA, Zotov AV, Utas OA, Kotlyar VG, Wei CM, Wang YL.
2009.
Structural properties of Cu clusters on Si(111):Cu2Si magic family, Sep. Surface Science. 603:2874-2878., Number 18
AbstractBasing on the results of the scanning tunneling microscopy (STM) observations and density functional theory (DFT) calculations, the structural model for the Cu magic clusters formed on Si(1 1 1)7 x 7 surface has been proposed. Using STM, composition of the Cu magic clusters has been evaluated from the quantitative analysis of the Cu and Si mass transport occurring during magic cluster converting into the Si(1 1 1)’5.5 x 5.5’-Cu reconstruction upon annealing. Evaluation yields that Cu magic cluster accommodates similar to 20 Cu atoms with similar to 20 Si atoms being expelled from the corresponding 7 x 7 half unit cell (HUC). In order to fit these values, it has been suggested that the Cu magic clusters resemble fragments of the Cu2Si-silicide monolayer incorporated into the rest-atom layer of the Si(1 1 1)7 x 7 HUCs. Using DFT calculations, stability of the nineteen models has been tested of which five models appeared to have formation energies lower than that of the original Si(1 1 1)7 x 7 surface. The three of five models having the lowest formation energies have been concluded to be the most plausible ones. They resemble well the evaluated composition and their counterparts are found in the experimental STM images. (C) 2009 Elsevier B.V. All rights reserved.
Yan, JA, Xian LD, Chou MY.
2009.
Structural and Electronic Properties of Oxidized Graphene, Aug. Physical Review Letters. 103:4., Number 8
AbstractWe have systematically investigated the effect of oxidation on the structural and electronic properties of graphene based on first-principles calculations. Energetically favorable atomic configurations and building blocks are identified, which contain epoxide and hydroxyl groups in close proximity with each other. Different arrangements of these units yield a local-density approximation band gap over a range of a few eV. These results suggest the possibility of creating and tuning the band gap in graphene by varying the oxidation level and the relative amount of epoxide and hydroxyl functional groups on the surface.
Berzina, B, Trinkler L, Jakimovica D, Korsaks V, Grabis J, Steins I, Palcevskis, Bellucci S, Chen LC, Chattopadhyay S t, Chen KH.
2009.
Spectral characterization of bulk and nanostructuredaluminum nitride. J. Nanophotonics. 3:031950.