Size- and strain-dependent electronic structures in H-passivated Si 112 nanowires

Citation:
Huang, L, Lu N, Yan JA, Chou MY, Wang CZ, Ho KM.  2008.  Size- and strain-dependent electronic structures in H-passivated Si 112 nanowires, Oct. Journal of Physical Chemistry C. 112:15680-15683., Number 40

Abstract:

Using first-principles calculations within density functional theory, we have investigated the electronic properties of H-passivated Si nanowires (SiNWs) oriented along the 112 direction, with the atomic geometries retrieved via global search using genetic algorithm. We show that [112] SiNWs have an indirect band gap in the ultrathin diameter regime, whereas the energy difference between the direct and indirect fundamental band gaps progressively decreases as the wire size increases, indicating that larger [112] SiNWs could have a quasi-direct band gap. We further show that this quasi-direct gap feature can be enhanced when applying uniaxial compressive stress along the wire axis. Moreover, our calculated results also reveal that the electronic band structure is sensitive to the change of the aspect ratio of the cross sections.

Notes:

ISI Document Delivery No.: 356DYTimes Cited: 8Cited Reference Count: 30Cited References: LU AJ, 2008, NANOTECHNOLOGY, V9, P35708 Ng MF, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.155435 Rurali R, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.113303 Yan JA, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.115319 Lu N, 2007, J PHYS CHEM C, V111, P7933, DOI 10.1021/jp072519o Goldberger J, 2006, NANO LETT, V6, P973, DOI 10.1021/nl060166j Niquet YM, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.165319 Chan TL, 2006, NANO LETT, V6, P277, DOI 10.1021/nl0522633 LI J, 2006, PHYS REV B, V74, P75333 PONOMAREVA L, 2006, PHYS REV B, V74 VO T, 2006, PHYS REV B, V74, P45116 Koo SM, 2005, NANO LETT, V5, P2519, DOI 10.1021/nl051855i Migas DB, 2005, J APPL PHYS, V98, DOI 10.1063/1.2039275 RURALI R, 2005, PHYS REV LETT, V94, P26805 Zhao XY, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.236805 Hahm J, 2004, NANO LETT, V4, P51, DOI 10.1021/nl034853b Ma DDD, 2003, SCIENCE, V299, P1874, DOI 10.1126/science.1080313 Cui Y, 2003, NANO LETT, V3, P149, DOI 10.1021/nl025875l Williamson AJ, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.196803 Cui Y, 2001, SCIENCE, V293, P1289, DOI 10.1126/science.1062711 Cui Y, 2001, SCIENCE, V291, P851, DOI 10.1126/science.291.5505.851 Ho KM, 1998, NATURE, V392, P582 PIMPINELLI A, 1998, PHYS CRYSTAL GROWTH, pCH3 KRESSE G, 1994, J PHYS-CONDENS MAT, V6, P8245, DOI 10.1088/0953-8984/6/40/015 KRESSE G, 1994, PHYS REV B, V49, P14251, DOI 10.1103/PhysRevB.49.14251 KRESSE G, 1994, J COMPUT MAT SCI, V6, P15 DELERUE C, 1993, PHYS REV B, V48, P11024, DOI 10.1103/PhysRevB.48.11024 VANDERBILT D, 1990, PHYS REV B, V41, P7892, DOI 10.1103/PhysRevB.41.7892 HYBERTSEN MS, 1986, PHYS REV B, V34, P5390, DOI 10.1103/PhysRevB.34.5390 MONKHORST HJ, 1976, PHYS REV B, V13, P5188, DOI 10.1103/PhysRevB.13.5188Huang, Li Lu, Ning Yan, Jia-An Chou, M. Y. Wang, Cai-Zhuang Ho, Kai-MingU.S. Department of Energy by Iowa State University[DE-AC02-07CH11358]; National Science Foundation[DMR-02-05328]; Department of Energy[DE-FG02-97ER45632, DE-AC03-76SF00098]; National Energy Research Supercomputing Center (NERSC); San Diego Supercomputer Center (SDSC)Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was also supported by the National Science Foundation (Grant No. DMR-02-05328) and the Department of Energy (Grant No. DE-FG02-97ER45632 and Computational Materials Science Network). The computation used resources of the National Energy Research Supercomputing Center (NERSC), which is supported by the Department of Energy (Grant No. DE-AC03-76SF00098), and the San Diego Supercomputer Center (SDSC).AMER CHEMICAL SOCWASHINGTON

Website