Structural and Electronic Properties of Oxidized Graphene

Citation:
Yan, JA, Xian LD, Chou MY.  2009.  Structural and Electronic Properties of Oxidized Graphene, Aug. Physical Review Letters. 103:4., Number 8

Abstract:

We have systematically investigated the effect of oxidation on the structural and electronic properties of graphene based on first-principles calculations. Energetically favorable atomic configurations and building blocks are identified, which contain epoxide and hydroxyl groups in close proximity with each other. Different arrangements of these units yield a local-density approximation band gap over a range of a few eV. These results suggest the possibility of creating and tuning the band gap in graphene by varying the oxidation level and the relative amount of epoxide and hydroxyl functional groups on the surface.

Notes:

ISI Document Delivery No.: 487PYTimes Cited: 39Cited Reference Count: 27Cited References: Elias DC, 2009, SCIENCE, V323, P610 Jung I, 2008, NANO LETT, V8, P4283, DOI 10.1021/nl8019938 Cai WW, 2008, SCIENCE, V321, P1815, DOI 10.1126/science.1162369 Boukhvalov DW, 2008, J AM CHEM SOC, V130, P10697, DOI 10.1021/ja8021686 Wu XS, 2008, PHYS REV LETT, V101 Eda G, 2008, NAT NANOTECHNOL, V3, P270, DOI 10.1038/nnano.2008.83 Pandey D, 2008, SURF SCI, V602, P1607, DOI 10.1016/j.susc.2008.02.025 Li XL, 2008, SCIENCE, V319, P1229, DOI 10.1126/science.1150878 Li D, 2008, NAT NANOTECHNOL, V3, P101, DOI 10.1038/nnano.2007.451 Kudin KN, 2008, NANO LETT, V8, P36, DOI 10.1021/nl071822y Gilje S, 2007, NANO LETT, V7, P3394, DOI 10.1021/nl0717715 Gomez-Navarro C, 2007, NANO LETT, V7, P3499, DOI 10.1021/nl072090c Giovannetti G, 2007, PHYS REV B, V76 de Heer WA, 2007, SOLID STATE COMMUN, V143, P92, DOI 10.1016/j.ssc.2007.04.023 Stankovich S, 2007, CARBON, V45, P1558, DOI 10.1016/j.carbon.2007.02.034 Han MY, 2007, PHYS REV LETT, V98 Geim AK, 2007, NAT MATER, V6, P183, DOI 10.1038/nmat1849 Ohta T, 2006, SCIENCE, V313, P951, DOI 10.1126/science.1130681 Li JL, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.176101 Schniepp HC, 2006, J PHYS CHEM B, V110, P8535, DOI 10.1021/jp060936f Lerf A, 1998, J PHYS CHEM B, V102, P4477, DOI 10.1021/jp9731821 He HY, 1998, CHEM PHYS LETT, V287, P53, DOI 10.1016/S0009-2614(98)00144-4 NAKAJIMA T, 1994, CARBON, V32, P469, DOI 10.1016/0008-6223(94)90168-6 KRESSE G, 1993, PHYS REV B, V47, P558, DOI 10.1103/PhysRevB.47.558 MERMOUX M, 1991, CARBON, V29, P469, DOI 10.1016/0008-6223(91)90216-6 VANDERBILT D, 1990, PHYS REV B, V41, P7892, DOI 10.1103/PhysRevB.41.7892 NAKAJIMA T, 1988, CARBON, V26, P357, DOI 10.1016/0008-6223(88)90227-8Yan, Jia-An Xian, Lede Chou, M. Y.Department of Energy[DE-FG02-97ER45632]; National Science Foundation[DMR-08-20382]; Office of Science of the U. S. Department of Energy[DE-AC02-05CH11231]We acknowledge stimulating discussions with W. de Heer, C. Berger, X. Wu, and M. Sprinkle. J. A. Y. thanks D. Pandey for sending a copy of their paper. This work is supported by the Department of Energy (Grant No. DEFG02-97ER45632). L. X. acknowledges support from the Georgia Tech MRSEC funded by the National Science Foundation (Grant No. DMR-08-20382). This research used computational resources at the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231, and the National Science Foundation TeraGrid resources provided by the Texas Advanced Computing Center (TACC).AMER PHYSICAL SOCCOLLEGE PK

Website