Size and orientation dependence in the electronic properties of silicon nanowires

Citation:
Yan, JA, Yang L, Chou MY.  2007.  Size and orientation dependence in the electronic properties of silicon nanowires, Sep. Physical Review B. 76:6., Number 11

Abstract:

By using first-principles pseudopotential methods, we have studied the electronic properties of hydrogen-passivated silicon nanowires along the [100], [110], and [111] directions with diameter up to 3.4 nm. It is found that as the diameter decreases, the energy band gaps are distinctly enlarged due to the confinement effect. The valence-band maximum moves down while the conduction-band minimum moves up compared with the bulk. By using the many-body perturbation theory within the GW approximation, we have also investigated the self-energy correction to the energy band gaps. Our calculational results show that, although the band gap values strongly depend on both the diameter and orientation, the GW corrections are mainly dependent on diameter and less sensitive to the growth orientation. The effective mass as a function of diameter is also discussed.

Notes:

ISI Document Delivery No.: 215CRTimes Cited: 40Cited Reference Count: 37Cited References: Bruno M, 2007, PHYS REV LETT, V98 Cao JX, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.136105 Li J, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.075333 Vo T, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.045116 Rozzi CA, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.205119 Sirbuly DJ, 2005, J PHYS CHEM B, V109, P15190, DOI 10.1021/jp051813i Wang J, 2005, IEEE T ELECTRON DEV, V52, P1589, DOI 10.1109/TED.2005.850945 Friedman RS, 2005, NATURE, V434, P1085, DOI 10.1038/4341085a Wang J, 2005, APPL PHYS LETT, V86, DOI 10.1063/1.1873055 Rurali R, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.026805 Zhao XY, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.236805 Spataru CD, 2004, APPL PHYS A-MATER, V78, P1129, DOI 10.1007/s00339-003-2464-2 Wu Y, 2004, NANO LETT, V4, P433, DOI 10.1021/nl035162i Ma DDD, 2003, SCIENCE, V299, P1874, DOI 10.1126/science.1080313 Cui Y, 2003, NANO LETT, V3, P149, DOI 10.1021/nl025875l Katz D, 2002, PHYS REV LETT, V89 Huang Y, 2001, SCIENCE, V294, P1313, DOI 10.1126/science.1066192 Cui Y, 2001, SCIENCE, V293, P1289, DOI 10.1126/science.1062711 Huang MH, 2001, SCIENCE, V292, P1897, DOI 10.1126/science.1060367 Cui Y, 2001, APPL PHYS LETT, V78, P2214, DOI 10.1063/1.1363692 Cui Y, 2001, SCIENCE, V291, P851, DOI 10.1126/science.291.5505.851 Duan XF, 2001, NATURE, V409, P66, DOI 10.1038/35051047 Rohlfing M, 2000, PHYS REV B, V62, P4927, DOI 10.1103/PhysRevB.62.4927 Duan XF, 2000, APPL PHYS LETT, V76, P1116, DOI 10.1063/1.125956 HOLMES JD, 2000, SCIENCE, V287, P1472 Morales AM, 1998, SCIENCE, V279, P208, DOI 10.1126/science.279.5348.208 DELLEY B, 1995, APPL PHYS LETT, V67, P2370, DOI 10.1063/1.114348 ONIDA G, 1995, PHYS REV LETT, V75, P818, DOI 10.1103/PhysRevLett.75.818 YEH CY, 1994, PHYS REV B, V50, P14405, DOI 10.1103/PhysRevB.50.14405 DELERUE C, 1993, PHYS REV B, V48, P11024, DOI 10.1103/PhysRevB.48.11024 HYBERTSEN MS, 1993, PHYS REV B, V48, P4608, DOI 10.1103/PhysRevB.48.4608 BUDA F, 1992, PHYS REV LETT, V69, P1272, DOI 10.1103/PhysRevLett.69.1272 READ AJ, 1992, PHYS REV LETT, V69, P1232, DOI 10.1103/PhysRevLett.69.1232 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 CANHAM LT, 1990, APPL PHYS LETT, V57, P1046, DOI 10.1063/1.103561 HYBERTSEN MS, 1986, PHYS REV B, V34, P5390, DOI 10.1103/PhysRevB.34.5390 DILLON JA, 1958, J APPL PHYS, V29, P1195, DOI 10.1063/1.1723401Yan, Jia-An Yang, Li Chou, M. Y.AMER PHYSICAL SOCCOLLEGE PK

Website