Publications

Export 102 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
Chao, M-H, Tsai P-Y, Lin K-C.  2011.  Molecular elimination of methyl formate in photolysis at 234 nm: Roaming vs. transition state-type mechanism. Physical Chemistry Chemical Physics. 13:7154-7161., Number 15 AbstractWebsite

Ion imaging coupled with (2 + 1) resonance-enhanced multiphoton ionization (REMPI) technique is employed to probe CO(v″ = 0) fragments at different rotational levels following photodissociation of methyl formate (HCOOCH 3) at 234 nm. When the rotational level, J″CO, is larger than 24, only a broad translational energy distribution extending beyond 70 kcal mol-1 with an average energy of about 23 kcal mol -1 appears. The dissociation process is initiated on the energetic ground state HCOOCH3 that surpasses a tight transition state along the reaction coordinate prior to breaking into CO + CH3OH. This molecular dissociation pathway accounts for the CO fragment with larger rotational energy and large translational energy. As J″CO decreases, a bimodal distribution arises with one broad component and the other sharp component carrying the average energy of only 1-2 kcal mol-1. The branching ratio of the sharp component increases with a decrease of J″CO; (7.3 ± 0.6)% is reached as the image is probed at J″CO = 10. The production of a sharp component is ascribed to a roaming mechanism that has the following features: a small total translational energy, a low rotational energy partitioning in CO, but a large internal energy in the CH3OH co-product. The internal energy deposition in the fragments shows distinct difference from those via the conventional transition state. © the Owner Societies 2011.

Lin, K-C, Tsai P-Y.  2014.  Molecular halogen elimination from halogen-containing compounds in the atmosphere. Physical Chemistry Chemical Physics. 16:7184-7198., Number 16 AbstractWebsite

Atmospheric halogen chemistry has drawn much attention, because the halogen atom (X) playing a catalytic role may cause severe stratospheric ozone depletion. Atomic X elimination from X-containing hydrocarbons is recognized as the major primary dissociation process upon UV-light irradiation, whereas direct elimination of the X2 product has been seldom discussed or remained a controversial issue. This account is intended to review the detection of X2 primary products using cavity ring-down absorption spectroscopy in the photolysis at 248 nm of a variety of X-containing compounds, focusing on bromomethanes (CH2Br2, CF2Br2, CHBr2Cl, and CHBr3), dibromoethanes (1,1-C 2H4Br2 and 1,2-C2H 4Br2) and dibromoethylenes (1,1-C2H 2Br2 and 1,2-C2H2Br2), diiodomethane (CH2I2), thionyl chloride (SOCl 2), and sulfuryl chloride (SO2Cl2), along with a brief discussion on acyl bromides (BrCOCOBr and CH2BrCOBr). The optical spectra, quantum yields, and vibrational population distributions of the X2 fragments have been characterized, especially for Br2 and I2. With the aid of ab initio calculations of potential energies and rate constants, the detailed photodissociation mechanisms may be comprehended. Such studies are fundamentally important to gain insight into the dissociation dynamics and may also practically help to assess the halogen-related environmental variation. This journal is © the Partner Organisations 2014.

Dhenadhayalan, N, Hsin T-H, Lin K-C.  2019.  Multifunctional Nanohybrid of Palladium Nanoparticles Encapsulated by Carbon-Dots for Exploiting Synergetic Applications. Advanced Materials Interfaces. 6(19) AbstractWebsite

Palladium nanoparticles encapsulated in the carbon dots (Pd/C-dots) are demonstrated to play a role of multifunctional nanohybrid in the synergetic applications of sensor and catalysis. The photochemical method is applied to synthesize Pd/C-dots in which Pd nanoparticles (NPs) are dispersedly encapsulated by C-dots layer. The nanohybrid can function as a fluorescent sensor and reductive catalyst, due to the inherent properties of C-dots and Pd NPs, respectively. The Pd/C-dots exhibit a highly selective and sensitive detection toward the nickel (Ni2+) ion with a detection limit of 7.26 × 10−9 m. Moreover, the Ni2+ is detected in MCF-7 live cells signifying the applicability of nanohybrid as a promising sensor. On the other hand, the Pd/C-dots show an excellent catalytic performance in the reduction of 4-nitrophenol and eosin yellow. A plausible mechanism for sensing and catalysis behavior is proposed. The sensor system is designed on the basis of the fluorescence turn-on when Ni2+ interacts with functional groups of the C-dots layer. The activities of catalytic reduction are mainly governed by the Pd NPs and further enhanced when the C-dots layer is incorporated. The Pd/C-dots can serve as a new paradigm for opening a potential trend in the design of multifunctional materials to diverse applications. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

N
Lin, C.-H., WCLLKCSMSML-XK-.  2020.  Non-invasive and time-dependent blood-sugar monitoring via breath-derived CO2 correlation using gas chromatograph with a milli-whistle gas analyze. AbstractWebsite

A clear and positive correlation between the CO2 concentration and the blood-sugar level has been observed via a noninvasive and time-dependent monitoring of CO2 concentration from human breath, which is carried out by using a homemade gas chromatography (GC)/milli-whistle compact analyzer. The time-dependent sampling of the CO2 concentration correlated between 5.0 to 5.6% (1% = 104 ppm) in accordance with blood-sugar level variations of 80 to 110 mg/dL. The analytical method results in a rapid, continuous and non-invasive determination of blood-sugar level via measurement of the CO2 concentration exhaled from the lungs.

Tsai, P-Y, Lin K-C.  2013.  Note: Photodissociation of CH3COCN at 308 nm by time-resolved Fourier-transform infrared emission spectroscopy: Is CO a primary or secondary product? Journal of Chemical Physics. 138, Number 24 AbstractWebsite

This Note aims to clarify the source of CO in photodissociation of acetyl cyanide (CH3COCN) at 308 nm. From the theoretical aspects, a new pathway via isomerization transition state (TS) at 391 ± 8 kJ/mol is found leading to the CO + CH3NC products. An amount of 60% reactant molecules at 300 K is estimated to successfully surpass the average TS barrier lying above the excitation energy by 3.5 kJ/mol. Further, a prior distribution method is conducted to characterize the vibrational energy distribution of CO on a statistical basis. The pathway to CH3NC + CO yields a vibrational branching ratio (v = 0:v = 1:v = 2:v = 3∼0.63:0.25:0.093:0.032) in excellent agreement with the observation (0.62:0.25:0.09:0.05). © 2013 AIP Publishing LLC.

O
Tsai, P-Y, Che D-C, Nakamura M, Lin K-C, Kasai T.  2011.  Orientation dependence for Br formation in the reaction of oriented OH radical with HBr molecule. Physical Chemistry Chemical Physics. 13:1419-1423., Number 4 AbstractWebsite

The orientation dependence of Br-atom formation in the reaction of the oriented OH radical with the HBr molecule using the hexapole electrostatic field was studied. Experimental results for the orientation dependence in the reaction were analyzed using a Legendre polynomial fit. The results show two reactive sites. It was found that O-end attack is most favored for this reaction, and that H-end attack also shows a pronounced reactivity. The reactivity of the side-ways attack was found to be small. By comparing the results of the orientation dependence in the reaction with studies of inelastic collisions and theoretical calculations, two reaction pathways are proposed. Reaction by O-end attack is followed by a direct abstraction of the H-atom from the HBr molecule. The mechanism for H-end attack may have H-atom migration from HBr to form the water molecule. © 2011 the Owner Societies.

Tsai, P-Y, Che D-C, Nakamura M, Lin K-C, Kasai T.  2010.  Orientation dependence in the four-atom reaction of OH + HBr using the single-state oriented OH radical beam. Physical Chemistry Chemical Physics. 12:2532-2534., Number 11 AbstractWebsite

The orientation dependence for the Br atom formation in the reaction of the oriented OH radicals with HBr molecules at 0.26 eV collision energy has been observed for the first time using the hexapole electric field, and we found that the reaction cross-section for O-end attack is more favorable than that for H-end attack by a factor of 3.4 ± 2.3. © the Owner Societies.

Veerakumar, P., LK-C.  2020.  An overview of palladium supported on carbon-based materials: Synthesis, characterization, and its catalytic activity for reduction of hexavalent chromium. AbstractWebsite

Palladium plays a pivotal role in most of the industrial heterogeneous catalysts, because of its unique properties such as well-defined structure, great intrinsic carrier, outstanding electronic, mechanical and thermal stability. The combination of palladium and various porous carbons (PCs) can widen the use of heterogeneous catalysts. This review highlights the advantages and limitations of carbon supported palladium-based heterogeneous catalyst in reduction of toxic hexavalent chromium (Cr(VI)). In addition, we address recent progress on synthesis routes for mono and bimetallic palladium nanoparticles supported by various carbon composites including graphene-based materials, carbon nanotubes, mesoporous carbons, and activated carbons. The related reaction mechanisms for the Cr(VI) reduction are also suggested. Finally, the challenge and perspective are proposed. © 2020

P
Veerakumar, P., MRGJLTBGS.  2020.  Paper flower-derived porous carbons with high-capacitance by chemical and physical activation for sustainable applications. AbstractWebsite

Porous carbon nanosheets were prepared by the carbonization of paper flower via chemical and physical activation. The structural properties of the as-prepared carbons were characterized using the techniques, such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, N2 sorption isotherms and X-ray photoelectron spectroscopy (XPS), while the related morphological analyses were conducted using scanning/transmission electron microscopy (SEM/TEM). The obtained carbons exhibit a high specific surface area up to 1801 m2 g−1 with a robust porous graphitic carbon layer structure, which provides the merits for potential application in energy storage and dye removal. We carried out potentiostatic and galvanostatic measurements using a three-electrode cell in 1.0 M H2SO4 aqueous electrolyte and achieved a specific capacitance of 118, 109.5, 101.7, 93.6, and 91.2 F g−1 at 1, 2, 4, 8 and 12 A g−1, respectively. The stability at 12 A g−1 was tested to reach 10,000 cycles with capacity retention of around 97.4%. We have demonstrated that the paper flower-derived carbons at activation temperature 800 °C (PFC-800) can be used as a promising electrode material in supercapacitor. PFC-800 can also serve as an efficient sunset yellow dye removal, showing the maximum adsorption capacity for sunset yellow (Q0, 273.6 mg g−1). © 2018 King Saud University

Veerakumar, P, Maiyalagan T, Raj BGS, Guruprasad K, Jiang Z, Lin K-C.  2018.  Paper flower-derived porous carbons with high-capacitance by chemical and physical activation for sustainable applications. Arabian Journal of Chemistry. AbstractWebsite

Porous carbon nanosheets were prepared by the carbonization of paper flower via chemical and physical activation. The structural properties of the as-prepared carbons were characterized using the techniques, such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, N2 sorption isotherms and X-ray photoelectron spectroscopy (XPS), while the related morphological analyses were conducted using scanning/transmission electron microscopy (SEM/TEM). The obtained carbons exhibit a high specific surface area up to 1801 m2 g−1 with a robust porous graphitic carbon layer structure, which provides the merits for potential application in energy storage and dye removal. We carried out potentiostatic and galvanostatic measurements using a three-electrode cell in 1.0 M H2SO4 aqueous electrolyte and achieved a specific capacitance of 118, 109.5, 101.7, 93.6, and 91.2 F g−1 at 1, 2, 4, 8 and 12 A g−1, respectively. The stability at 12 A g−1 was tested to reach 10,000 cycles with capacity retention of around 97.4%. We have demonstrated that the paper flower-derived carbons at activation temperature 800 °C (PFC-800) can be used as a promising electrode material in supercapacitor. PFC-800 can also serve as an efficient sunset yellow dye removal, showing the maximum adsorption capacity for sunset yellow (Q0, 273.6 mg g−1). © 2018 King Saud University

Dhenadhayalan, N., LK-C.  2020.  Photochemically Synthesized Ruthenium Nanoparticle-Decorated Carbon-Dot Nanochains: An Efficient Catalyst for Synergistic Redox Reactions. AbstractWebsite

Ruthenium nanoparticle (NP)-decorated carbon dots (Ru/C-dots) were fabricated as a potential catalyst in the application of both oxidation and reduction. The photochemical method was used to synthesize Ru/C-dot nanohybrids. The as-prepared Ru/C-dots exhibited a core-shell-based nanochain structure, in which the spherical nature of C-dots further evolved to a layer structure to homogeneously encapsulate Ru NPs. Such Ru/C-dots have excellent catalytic properties, which were demonstrated in the oxidation of flavonoids and concomitantly reduction of inorganic complex and organic dyes, each yielding a high catalytic rate constant. We also proposed an appropriate catalytic mechanism for each reaction. Higher catalytic activity was achieved by the synergistic effect of the encapsulated Ru NPs and the C-dots layer. Further, this nanohybrid was successfully applied to inspect a real aqueous sample. We anticipated that Ru/C-dots nanohybrid may open up a broad platform for the design of efficient multifunctional catalysts. Copyright © 2020 American Chemical Society.

Muthiah, B, Paredes-Roibás D, Kasai T, Lin K-C.  2019.  Photodissociation of CH2BrI using cavity ring-down spectroscopy: in search of a BrI elimination channel. Physical Chemistry Chemical Physics. 21(26):13943-13949. AbstractWebsite

Photodissociation of CH2BrI was investigated in search of unimolecular elimination of BrI via a primary channel using cavity ring-down absorption spectroscopy (CRDS) at 248 nm. The BrI spectra were acquired involving the first three ground vibrational levels corresponding to A3Π1 ← X1Σ+ transition. With the aid of spectral simulation, the BrI rotational lines were assigned. The nascent vibrational populations for v′′ = 0, 1, and 2 levels are obtained with a population ratio of 1:(0.58 ± 0.10):(0.34 ± 0.05), corresponding to a Boltzmann-like vibrational temperature of 713 ± 49 K. The quantum yield of the ground state BrI elimination reaction is determined to be 0.044 ± 0.014. The CCSD(T)//B3LYP/MIDI! method was employed to explore the potential energy surface for the unimolecular elimination of BrI from CH2BrI.

Lin, K-C, Hung K-C, Tsai P-Y, Li H-K.  2014.  Photodissociation of CH3CHO at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: Verification of roaming and triple fragmentation. Journal of Chemical Physics. 140, Number 6 AbstractWebsite

By using time-resolved Fourier-transform infrared emission spectroscopy, the HCO fragment dissociated from acetaldehyde (CH3CHO) at 248 nm is found to partially decompose to H and CO. The fragment yields are enhanced by the Ar addition that facilitates the collision-induced internal conversion. The channels to CH2CO + H2 and CH3CO + H are not detected significantly. The rotational population distribution of CO, after removing the Ar collision effect, shows a bimodal feature comprising both low- and high-rotational (J) components, sharing a fraction of 19% and 81%, respectively, for the vibrational state v = 1. The low-J component is ascribed to both roaming pathway and triple fragmentation. They are determined to have a branching ratio of <0.13 and >0.06, respectively, relative to the whole v = 1 population. The CO roaming is accompanied by a highly vibrational population of CH4 that yields a vibrational bimodality. © 2014 AIP Publishing LLC.

Liu, Y-T, Tsai M-T, Liu C-Y, Tsai P-Y, Lin K-C, Shih YH, Chang AHH.  2010.  Photodissociation of gaseous acetyl chloride at 248 nm by time-resolved fourier-transform infrared spectroscopy: The HCl, CO, and CH2 product channels. Journal of Physical Chemistry A. 114:7275-7283., Number 27 AbstractWebsite

In one-photon dissociation of gaseous acetyl chloride at 248 nm, time-resolved Fourier-transform infrared emission spectroscopy is used to detect the fragments of HCl, CO, and CH2 in the presence of Ar or O 2. The high-resolution spectra of HCl and CO are analyzed to yield the corresponding internal energy deposition of 8.9 ± 1.1 and 6.2 ± 0.9 kcal/mol. The presence of the CH2 fragment is verified by detecting the CO2 product resulting from the reaction of CH 2 and the added O2. The probability of the HCl formation via a hot Cl reaction with the precursor is examined to be negligible by performing two experiments, the CH3COCl pressure dependence and the measurement of Br2 with Cl reaction. The HCl elimination channel under the Ar addition is verified to be slowed by 2 orders of magnitude, as compared to the Cl elimination channel. The observed fragments are proposed to dissociate on the hot ground electronic state via collision-induced internal conversion. A two-body dissociation channel is favored leading to HCl and CH2CO, followed by secondary dissociation. © 2010 American Chemical Society.

Hu, E-L, Tsai P-Y, Fan H, Lin K-C.  2013.  Photodissociation of gaseous CH3COSH at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: Observation of three dissociation channels. Journal of Chemical Physics. 138, Number 1 AbstractWebsite

Upon one-photon excitation at 248 nm, gaseous CH3C(O)SH is dissociated following three pathways with the products of (1) OCS + CH 4, (2) CH3SH + CO, and (3) CH2CO + H 2S that are detected using time-resolved Fourier-transform infrared emission spectroscopy. The excited state 1(nO, π *CO) has a radiative lifetime of 249 ± 11 ns long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of collision-induced internal conversion is estimated to be 1.1 × 10-10 cm3 molecule -1 s-1. Among the primary dissociation products, a fraction of the CH2CO moiety may undergo further decomposition to CH2 + CO, of which CH2 is confirmed by reaction with O2 producing CO2, CO, OH, and H2CO. Such a secondary decomposition was not observed previously in the Ar matrix-isolated experiments. The high-resolution spectra of CO are analyzed to determine the ro-vibrational energy deposition of 8.7 ± 0.7 kcal/mol, while the remaining primary products with smaller rotational constants are recognized but cannot be spectrally resolved. The CO fragment detected is mainly ascribed to the primary production. A prior distribution method is applied to predict the vibrational distribution of CO that is consistent with the experimental findings. © 2013 American Institute of Physics.

Tsai, M-T, Liu Y-T, Liu C-Y, Tsai P-Y, Lin K-C.  2010.  Photodissociation of gaseous propionyl chloride at 248 nm by time-resolved Fourier-transform infrared spectroscopy. Chemical Physics. 376:1-9., Number 1-3 AbstractWebsite

In one-photon dissociation of propionyl chloride at 248 nm, time-resolved Fourier-transform infrared emission spectroscopy is used to detect the fragments of HCl and CO in the presence of Ar. The inert gas Ar plays a role to enhance the internal conversion. The time-dependence of high-resolution HCl spectra yields a bimodal rotational distribution in the early stage. The total rotational and vibrational energy partitioned in HCl are evaluated to be 1.7 ± 0.3 and 8.8 ± 1.9 kcal/mol, respectively. The CO appearance indicates that HCl may be eliminated through a five-center mechanism accompanied with three-body dissociation of C2H2, HCl, and CO. A four-center mechanism forming HCl and CH3CHCO also contributes to the HCl fragment with a feature of rotational bimodality. However, the probability for the HCl contribution from the hot Cl reaction is negligible. The reaction with CH4 is carried out to evaluate the HCl and Cl elimination rate constants. © 2010 Elsevier B.V. All rights reserved.

Lin, K-C, Tsai P-Y, Chao M-H, Kasai T, Lombardi A, Palazzetti F, Aquilanti V.  2015.  Photodissociation of methyl formate: Conical intersections, roaming and triple fragmentation. AIP Conference Proceedings. 1702 Abstract

The photodissociation channels of methyl formate have been extensively investigated by two different advanced experimental techniques, ion imaging and Fourier-Transform-Infrared emission spectroscopy, combined with quantum chemical calculations and molecular dynamics simulations. Our aim is to characterize the role of alternative routes to the conventional transition-state mediated pathway: the roaming and the triple fragmentation processes. The photolysis experiments, carried out at a range of laser wavelengths in the vicinity of the triple fragmentation threshold, beside the simulation of large bunches of classical trajectories with different initial conditions, have shown that both mechanisms share a common path that involves a conical intersection during the relaxation process from the electronic excited state S1 to the ground state S0. © 2015 AIP Publishing LLC.

Tsai, P-Y, Hung K-C, Li H-K, Lin K-C.  2014.  Photodissociation of propionaldehyde at 248 nm: Roaming pathway as an increasingly important role in large aliphatic aldehydes. Journal of Physical Chemistry Letters. 5:190-195., Number 1 AbstractWebsite

Time-resolved Fourier transform infrared emission spectroscopy is employed in the photolysis of propionaldehyde (CH3CH2CHO) at 248 nm to characterize the role of the roaming pathway. High-resolution spectra of CO are analyzed to yield a single Boltzmann rotational distribution for each vibrational level (ν = 1-4) with small rotational and large vibrational energy disposals. A roaming saddle point is found containing two far separated moieties of HCO and CH3CH2 with a weak interaction between them. Quasiclassical trajectory calculations on this configuration yield the CO energy flow behavior, consistent with the findings. The rate constant along the roaming pathway is evaluated to be larger by >1-2 orders of magnitude than those along tight transition state or three-body dissociation pathways. This work implies that the roaming mechanism plays an increasingly important role in aliphatic aldehydes as the molecular size becomes larger. © 2013 American Chemical Society.

Chen, Y-J, Tzeng H-Y, Fan H-F, Chen M-S, Huang J-S, Lin K-C.  2010.  Photoinduced electron transfer of oxazine 1/TiO2 nanoparticles at single molecule level by using confocal fluorescence microscopy. Langmuir. 26:9050-9060., Number 11 AbstractWebsite

Kinetics of photoinduced electron transfer (ET) from oxazine 1 dye to TiO2 nanoparticles (NPs) surface is studied at a single molecule level by using confocal fluorescence microscopy. Upon irradiation with a pulsed laser at 630 nm, the fluorescence lifetimes sampled among 100 different dye molecules are determined to yield an average lifetime of 2.9 ± 0.3 ns, which is close to the value of 3.0 ± 0.6 ns measured on the bare coverslip. The lifetime proximity suggests that most interfacial electron transfer (IFET) processes for the current system are inefficient, probably caused by physisorption between dye and the TiO2 film. However, there might exist some molecules which are quenched before fluorescing and fail to be detected. With the aid of autocorrelation analysis under a three-level energy system, the IFET kinetics of single dye molecules in the conduction band of TiO2 NPs is evaluated to be (1.0 ± 0.1)×104 s-1 averaged over 100 single molecules and the back ET rate constant is 4.7 ± 0.9 s-1. When a thicker TiO2 film is substituted, the resultant kinetic data do not make a significant difference. The trend of IFET efficacy agrees with the method of fluorescence lifetime measurements. The obtained forward ET rate constants are about ten times smaller than the photovoltage response measured in an assembled dye-sensitized solar cell. The discrepancy is discussed. The inhomogeneous and fluctuation characters for the IFET process are attributed to microenvironment variation for each single molecule. The obtained ET rates are much slower than the fluorescence relaxation. Such a small ET quantum yield is yet feasibly detectable at a single molecule level. © 2010 American Chemical Society.

Srinivasan, V, Jhonsi MA, Lin K-C, Ananth DA, Sivasudha T, Narayanaswamy R, Kathiravan A.  2019.  Pyrene-based prospective biomaterial: In vitro bioimaging, protein binding studies and detection of bilirubin and Fe3+. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 211 AbstractWebsite

Herein, we have meticulously derived the nanosized fluorescent aggregates from pyrene Schiff base (PS) in DMSO:water (10:90) ratio. The aggregation property of PS molecule was characterized by SEM and TEM measurements, revealed the aggregated particles are in spherical shape with ~3 nm in size. Moreover, aggregates exhibit a high fluorescence quantum yield (48%) which was effectively used for the in vitro bioimaging of two different cancer cells such as A549 and MCF-7 cells in which it exhibiting excellent biocompatibility. Further, it was estimated the capability of twofold acridine orange/ethidium bromide (AO/EB) staining to identify the apoptotic associated changes in cancer cells. Additionally, the aggregates were successfully demonstrated as a luminescent probe for the perceptive biomolecule detection of bilirubin. On the other hand, the PS molecule was successfully utilized for protein binding and metal ion sensing studies. The interaction of bovine serum albumin (BSA) with PS molecule in DMSO was using fluorescence spectroscopic method and nature of interaction was also confirmed through molecular docking analysis. The PS molecule also acts as an excellent sensor for biologically important Fe3+ ion with detection limit of 336 nM. Overall, PS molecule can be a prospective material in biological field both in solution as well as aggregated forms. © 2019 Elsevier B.V.

Q
Hsiao, M-K, Lin K-C, Hung Y-M.  2011.  Quasiclassical trajectory calculations for Li(22PJ) H2 → LiH(X1) H: Influence by vibrational excitation and translational energy. Journal of Chemical Physics. 134, Number 3 AbstractWebsite

Ab initio potential energy surfaces and the corresponding analytical energy functions of the ground 1A′ and excited 2A′ states for the Li(22P) plus H2 reaction are constructed. Quasiclassical trajectory calculations on the fitted energy functions are performed to characterize the reactions of Li(22P) with H2(v 0, j 1) and H2(v 1, j 1) as well as the reaction when the vibrational energy is replaced by collision energy. For simplicity, the transition probability is assumed to be unity when the trajectories go through the crossing seam region and change to the lower surface. The calculated rotational distributions of LiH(v 0) for both H2(v 0, j 1) and H2(v 1, j 1) reactions are single-peaked with the maximum population at j′ 7, consistent with the previous observation. The vibrational excitation of H2(v 1) may enhance the reaction cross section of LiH(v′ 0) by about 200 times, as compared to a result of 93-107 reported in the experimental measurements. In contrast, the enhancement is 3.1, if the same amount of energy is deposited in the translational states. This endothermic reaction can be considered as an analog of late barrier. According to the trajectory analysis, the vibrational excitation enlarges the H-H distance in the entrance channel to facilitate the reaction, but the excess energy may not open up additional reaction configuration. © 2011 American Institute of Physics.

R
Kasai, T, Che D-C, Tsaia P-Y, Lina K-C.  2012.  Reaction dynamics with molecular beams and oriented molecular beams: A tool for looking closer to chemical reactions and photodissociations. Journal of the Chinese Chemical Society. 59:567-582., Number 5 AbstractWebsite

Experimental studies on reaction dynamics by use of molecular beams and oriented molecular beams are reviewed in order for looking closer to chemical reactions as well as photodissociations at the molecular level. We discuss about versatility and usefulness of the electrostatic hexapole sate-selector as a non-destructive selector for molecular structure analysis. Some experimental evidences on novel reaction dynamics in photodissociation and stereodynamics are presented followed by concluding remarks and future perspectives for controlling chemical reactions from the point of view of green chemistry, by manipulating molecular orientation without any catalyst nor by applying any external forces like intense electromagnetic field. © 2012 The Chemical Society Located in Taipei & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Dhenadhayalan, N., LSK-CTA.  2020.  Recent Advances in Functionalized Carbon Dots toward the Design of Efficient Materials for Sensing and Catalysis Applications. AbstractWebsite

Since the past decade, enormous research efforts have been devoted to the detection/degradation and quantification of environmental toxic pollutants and biologically important molecules due to their ubiquitous necessity in the fields of environmental protection and human health. These fields of sensor and catalysis are advanced to a new era after emerging of nanomaterials, especially, carbon nanomaterials including graphene, carbon nanotube, carbon dots (C-dots), etc. Among them, the C-dots in the carbon family are rapidly boosted in the aspect of synthesis and application due to their superior properties of chemical and photostability, highly fluorescent with tunable, non/low-toxicity, and biocompatibility. The C-dot-based functional materials have shown great potential in sensor and catalysis fields for the detection/degradation of environmental pollutants. The major advantage of C-dots is that they can be easily prepared from numerous biomass/waste materials which are inexpensive and environment-friendly and are suitable for a developing trend of sustainable materials. This review is devoted to the recent development (since 2017) in the synthesis of biomass- and chemical-derived C-dots as well as diverse functionalization of C-dots. Their capability as a sensor and catalyst and respective mechanism are summarized. The future perspectives of C-dots are also discussed.

Lin, K-C.  2016.  Regulation of nonadiabatic processes in the photolysis of some carbonyl compounds. Physical Chemistry Chemical Physics. 18:6980-6995., Number 10 AbstractWebsite

Carbonyl compounds studied are confined to acetyl halide (CH3COCl), acetyl cyanide (CH3COCN), acetyl sulfide (CH3COSH), acetaldehyde (CH3CHO), and methyl formate (HCOOCH3). They are asymmetrically substituted, but do not follow the well-known Norrish type I reactions. Each compound ejected in an effusive beam at about 300 K is commonly excited to the 1(n, π∗)CO lower state; that is, a nonbonding electron on O of the C=O group is promoted to the antibonding orbital of π∗CO. The photolysis experiments are conducted in the presence of Ar gas and the corresponding fragments are detected using time-resolved Fourier-transform Infrared (FTIR) emission spectroscopy. The enhancement of the collision-induced internal conversion or intersystem crossing facilitates the dissociation channels via highly vibrational states of the ground singlet (So) or triplet (T1) potential energy surfaces. In this manner, an alternative nonadiabatic channel is likely to open yielding different products, even if the diabatic coupling strength is strong between the excited state and the neighboring state. For instance, the photodissociation of CH3COCl at 248 nm produces HCl, CO, and CH2 fragments, in contrast to the supersonic jet experiments showing dominance of the Cl fragment eliminated from the excited state. If the diabatic coupling strength is weak, dissociation proceeds mainly through internal conversion, such as the cases of CH3COCN and CH3COSH. The photodissociation of CH3COCN at 308 nm has never been reported before, while for CH3COSH matrix-isolated photodissociation was conducted that shows a distinct spectral feature from the current FTIR method. The CH3CHO and HCOOCH3 molecules belong to the same type of carbonyl compounds, in which the molecular products, CO + CH4 and CO + CH3OH, are produced through both transition state and roaming pathways. Their products are characterized differently between molecular beam and current FTIR experiments. For instance, the photodissociation of HCOOCH3 at 248 nm yields CO with the vibrational state v ≥ 4, in contrast to the molecular beam experiments producing CO at v = 1. The photodissociation of CH3CHO at 308 nm intensifies a low energy component in the CH4 vibrational distribution, thus verifying the transition state pathway for the first time. © the Owner Societies 2016.

Veerakumar, P., SMTLASP.  2020.  Research Progress on Porous Carbon Supported Metal/Metal Oxide Nanomaterials for Supercapacitor Electrode Applications. AbstractWebsite

Recently, transition metal/metal oxides (TMMOs) decorated on porous carbons (PCs) have been intensively focused on designing rational electrode materials for the promising future specific category of electrochemical energy storage and conversion technologies. In particular, TMMO incorporation with PC structures has become very attractive in the area of supercapacitors (SCs) mainly caused by their large accessible surface areas (SSA), together with the suitable pore size distributions (PSD), high electrical conductivity, and rapid redox reactions reversibly on the surface. The transportation of ions, as well as electrons in the bulk of electrodes, is fast as a result of optimal contact between electrodes and electrolytes at the electrode-electrolyte interface, thereby generating high specific capacities (Csp) of these PCs with TMMOs. We report a survey regarding recent advances in the fabrication and synthesis of TMMOs decorated on PCs with some physical characteristics and their applications for electrochemical capacitors. Some future trends and prospects for further development of the subject nanocomposites in application to next-generation supercapacitors are discussed. © 2020 American Chemical Society.