Publications

Export 456 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Das, CR, Hsu HC, Dhara S, Bhaduri AK, Raj B, Chen LC, Chen KH, Albert SK, Ray A, Tzeng Y.  2010.  A complete Raman mapping of phase transitions in Si under indentation. J. Raman Spectroscopy. 41:334.
Bhusari, DM, Chen CK, Chen KH, Chuang TJ, Chen LC, Lin MC.  1997.  Composition of SiCN Crystals Consisting of a Predominantly Carbon-nitride Network. J. Mater. Res.. 12:322.
Shown, I, Ganguly A, Chen L-C, Chen K-H.  2015.  Conducting polymer-based flexible supercapacitor, 2015. Energy Science & EngineeringEnergy Science & Engineering. 3(1):2-26.: John Wiley & Sons, Ltd AbstractWebsite

Abstract Flexible supercapacitors, a state-of-the-art material, have emerged with the potential to enable major advances in for cutting-edge electronic applications. Flexible supercapacitors are governed by the fundamentals standard for the conventional capacitors but provide high flexibility, high charge storage and low resistance of electro active materials to achieve high capacitance performance. Conducting polymers (CPs) are among the most potential pseudocapacitor materials for the foundation of flexible supercapacitors, motivating the existing energy storage devices toward the future advanced flexible electronic applications due to their high redox active-specific capacitance and inherent elastic polymeric nature. This review focuses on different types of CPs-based supercapacitor, the relevant fabrication methods and designing concepts. It describes recent developments and remaining challenges in this field, and its impact on the future direction of flexible supercapacitor materials and relevant device fabrications.

Kamal Hussien, M, Sabbah A, Qorbani M, Putikam R, Kholimatussadiah S, Tzou D-LM, Hammad Elsayed M, Lu Y-J, Wang Y-Y, Lee X-H, Lin T-Y, Thang NQ, Wu H-L, Haw S-C, Wu KC-W, Lin M-C, Chen K-H, Chen L-C.  2024.  Constructing B─N─P Bonds in Ultrathin Holey g-C3N4 for Regulating the Local Chemical Environment in Photocatalytic CO2 Reduction to CO, 2024. SmallSmall. n/a(n/a):2400724.: John Wiley & Sons, Ltd AbstractWebsite

Abstract The lack of intrinsic active sites for photocatalytic CO2 reduction reaction (CO2RR) and fast recombination rate of charge carriers are the main obstacles to achieving high photocatalytic activity. In this work, a novel phosphorus and boron binary-doped graphitic carbon nitride, highly porous material that exhibits powerful photocatalytic CO2 reduction activity, specifically toward selective CO generation, is disclosed. The coexistence of Lewis-acidic and Lewis-basic sites plays a key role in tuning the electronic structure, promoting charge distribution, extending light-harvesting ability, and promoting dissociation of excitons into active carriers. Porosity and dual dopants create local chemical environments that activate the pyridinic nitrogen atom between the phosphorus and boron atoms on the exposed surface, enabling it to function as an active site for CO2RR. The P?N?B triad is found to lower the activation barrier for reduction of CO2 by stabilizing the COOH reaction intermediate and altering the rate-determining step. As a result, CO yield increased to 22.45 µmol g?1 h?1 under visible light irradiation, which is ≈12 times larger than that of pristine graphitic carbon nitride. This study provides insights into the mechanism of charge carrier dynamics and active site determination, contributing to the understanding of the photocatalytic CO2RR mechanism.

Chang, CY, Pearton* SJ, Huang PJ, G.C. Chi H, Wang T, Chen JJ, Ren F, Chen KH, Chen LC.  2007.  Control of nucleation site density of GaN nanowires. Appl. Surf. Sci.. 253:3196-3200.
Wu, JC, Chen CC, Chen KH, Chang* YC.  2011.  Controlled growth of aligned Alpha-helical polypeptide brushes for tunable electrical conductivity. ,Appl. Phys. Lett.. 98:133304.
Yang, J, Liu TW, Hsu CW, Chen LC, Chen KH, Chen* CC.  2006.  Controlled growth of aluminium nitride nanorod arrays via chemical vapour deposition. Nanotechnology. 17:S321-326.
Yang, TH, Chen CH, Chatterjee A, Li HY, Lo JT, Wu CT, Chen KH, Chen* LC.  2003.  Controlled growth of silicon carbide nanorods by rapid thermal process and their field emission properties. Chem. Phys. Lett.. 379:155-161.
Du, H-Y, Wang C-H, Hsu H-C, Chang S-T, Chen U-S, Yen SC, Chen LC, Shih H-C, Chen* KH.  2008.  Controlled platinum nanoparticles uniformly dispersed on nitrogen-doped carbon nanotubes for methanol oxidation. Diamond & Relat. Mater.. 17:535-541.
Chen*, LC, Wen CY, Liang CH, Hong WK, Chen KJ, Cheng HC, Shen CS, Wu CT, Chen KH.  2002.  Controlling steps during early stages of the aligned growth of carbon nanotubes using microwave plasma enhanced chemical vapor deposition. Adv. Fun. Mate. 12:687-692.
Syum, Z, Billo T, Sabbah A, Venugopal B, Yu S-Y, Fu F-Y, Wu H-L, Chen L-C, Chen K-H.  2021.  Copper Zinc Tin Sulfide Anode Materials for Lithium-Ion Batteries at Low Temperature, 2021. ACS Sustainable Chemistry & EngineeringACS Sustainable Chemistry & Engineering. : American Chemical Society AbstractWebsite
n/a
Aravind, K, Su YW, Ho IL, Wu CS, Chang-Liao KS, Su WF, Chen KH, Chen LC, Chen CD.  2009.  Coulomb blockade behavior in an indium nitride nanowire with disordered surface states. Appl. Phys. Lett.. 95:092110-(1-3).
Chen, LC, Chen KH, Wei SL, Kichambare PD, Wu JJ, Lu TR, Kuo CT.  1999.  Crystalline SiCN: ahard material rivals to cubic BN. Thin Solid Films. 355:112-116.
Chen, LC, Chen CK, Wei SL, Bhusari DM, Chen KH, Chen YF, Jong YC, Huang YS.  1998.  Crystalline silicon carbon nitride: a wide band gap semiconductor. Appl. Phys. Lett.. 72:2463-2465.
Chen, LC, Chen CK, Wei SL, Bhusari DM, Chen KH, Chen YF, Jong YC, Huang YS.  1998.  Crystalline Silicon Carbon Nitride: A Wide Band Gap Semiconductor. Appl. Phys. Lett.. 72:2463.
D
Wu, JJ, Wu CT, Liao YC, Lu TR, Chen LC, Chen KH, Hwa LG, Kuo CT, Ling KJ.  1999.  Deposition of silicon carbon nitride by ion-beam sputtering. Thin Solid Films. 355:417-422.
Huang, YF, Jen YJ, Chen LC, Chen KH, Chattopadhyay S.  2015.  Design for approaching cicada-wing reflectance in low and high index biomimetic nanostructures. ACS Nano . 9:301-311.
Chang, HJ, Chen CH, Chen* YF, Lin TY, Chen LC, Chen KH, Lan ZH.  2005.  Direct evidence of nanocluster-induced luminescence in InGaN epifilms. Appl. Phys. Lett.. 86:021911-(1-3).
Dhara, S, Chang CW, Tsai HM, Chen* LC, Chen KH.  2010.  Direct observation of amophization in load rate dependent nanoindentation studies of crystalline Si. Appl. Phys. Lett.. 96:253113.
Sakthivel, A, Huang SJ, Chen WH, Lan ZH, Chen KH, Lin HP, Mou CY, Liu* SB.  2005.  Direct synthesis of highly stable mesoporous molecular sieve (MMS-H) containing zeolite building units. Adv. Func. Mater.. 15:253-258.
Lai, YT, Ganguly A, Chen CP, Chen KH, Chen* LC.  2010.  Direct voltammetric sensing of L-cysteine atpristine GaN nanowires electrode. Biosensors and Bioelectronics. 26:1688-1691.
Horng, YY, Hsu YK, Chen CC, Chen LC, Chen* KH.  2009.  Direct-growth of polyaniline nanowires for enzyme-immobilization and glucose detection. Electrochem. Comm.. 11:850-853.
Yesi, Y, Shown I, Ganguly A, Ngo TT, Chen LC, Chen KH.  2016.  Directly-grown hierarchical carbon nanotube@polypyrrole core-shell hybrid for high-performance flexible supercapacitors. ChemSusChem . 9:370-378.
Chou, YC, Chattopadhyay S, Chen* LC, Chen YF, Chen KH.  2003.  Doping and electrical properties of amorphous silicon carbon nitride films. Diamond & Related Materials. 12:1213-1219.