Hsing, CR, Chou MY, Lee TK.
2006.
Exchange-correlation energy in molecules: A variational quantum Monte Carlo study, Sep. Physical Review A. 74:10., Number 3
AbstractWe have used the combination of the coupling-constant integration procedure and the variational quantum Monte Carlo method to study the exchange-correlation (XC) interaction in small molecules: Si-2, C2H2, C2H4, and C2H6. In this paper we report the calculated XC energy density, a central quantity in density functional theory, as deduced from the interaction between the electron and its XC hole integrated over the interaction strength. Comparing these "exact" XC energy densities with results using the local-density approximation (LDA), one can analyze the errors in this widely used approximation. Since the XC energy is an integrated quantity, error cancellation among the XC energy density in different regions is possible. Indeed we find a general error cancellation between the high-density and low-density regions. Moreover, the error distribution of the exchange contribution is out of phase with the error distribution of the correlation contribution. Similar to what is found for bulk silicon and an isolated silicon atom, the spatial variation of the errors of the LDA XC energy density in these molecules largely follows the sign and shape of the Laplacian of the electron density. Some noticeable deviations are found in Si-2 in which the Laplacian peaks between the atoms, while the LDA error peaks in the regions "behind" atoms where a good portion of the charge density originates from an occupied 1 sigma(u) antibonding orbital. Our results indicate that, although the functional form could be quite complex, an XC energy functional containing the Laplacian of the energy is a promising possibility for improving LDA.
Laha, S, Chen YC, Gupta P, Simien CE, Martinez YN, Mickelson PG, Nagel SB, Killian TC.
2006.
Kinetic energy oscillations in annular regions of ultracold neutral plasmas, Oct. European Physical Journal D. 40:51-56., Number 1
AbstractA study of ion equilibration in annular regions of ultracold strontium plasmas is reported. Plasmas are formed by photoionizing laser-cooled atoms with a pulsed dye laser. The experimental probe is spatially-resolved absorption spectroscopy using the S-2(1/2)-P-2(1/2) transition of the Sr+ ion. The kinetic energy of the ions is calculated from the Doppler broadening of the spectrum, and it displays clear oscillations during the first microsecond after plasma formation. The oscillations, which are a characteristic of strong coulomb coupling, are fit with a simple phenomenological model incorporating damping and density variation in the plasma.
Chang, CC, Chu JF, Kuo HH, Kang CC, Lin SH, Chang TC.
2006.
Solvent effect on photophysical properties of a fluorescence probe: BMVC, Jul-Oct. Journal of Luminescence. 119:84-90.
AbstractFluorescence studies of 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide (BMVC) in glycerol/water mixtures allow us to elucidate the photophysical behavior of BMVC upon interaction with different DNA structures. The very weak fluorescence emission of BMVC in highly polar solvents of water is attributed to an increase in nonradiative decay due to the intramolecular twist of the vinyl group induced by charge transfer. Increasing the solvent viscosity and rigidity could lead to large changes in the barrier height and substantial effects on relaxation processes, and result in an enhancement of the fluorescence quantum yield. Similarly, different binding interactions of BMVC with various DNA could perturb the frictions of the reorientation of the vinyl group. We suggest that the intramolecular twist of the vinyl group of BMVC is mainly responsible for the distinct fluorescence emissions under different local environments. (c) 2006 Elsevier B.V. All rights reserved.
Tsai, CH, Chan PH, Lin CH, Chang TC, Chia CT.
2006.
A new approach for the detection of a nonfluorescent compound by CE-resonance Raman spectroscopy based on the sweeping-MEKC mode, Dec. Electrophoresis. 27:4688-4693., Number 23
AbstractA CE-resonance Raman spectroscopy (CE-RRS) method based on MEKC and sweeping-MEKC modes is described. A nonfluorescent compound, malachite green (MG), and a doubled Nd:YAG laser (532 nm, 300 mW) were selected as model compound and light source, respectively. In order to carry out a quantitative analysis of MG, a monochromator (effective bandwidth, 0.4 nm) was used to collect the specific Raman line at 1616 cm(-1) (N-phi and C-C stretch, corresponding to 582 nm when the wavelength of the exciting source was 532 nm). As a result, the LOD for MG was 10 ppm, based on the MEKC/RRS mode. This could be improved to 5 ppb when the sweeping-MEKC/RRS mode was applied. Furthermore, with the addition of nano-size silver colloids to the CE buffer the detection limits can be further improved, but the data obtained with surface-enhanced resonance Raman spectroscopy (SERRS) are less useful for quantitative purposes.
Chang, CC, Chu JF, Kao FJ, Chiu YC, Lou PJ, Chen HC, Chang TC.
2006.
Verification of antiparallel G-quadruplex structure in human telomeres by using two-photon excitation fluorescence lifetime imaging microscopy of the 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide molecule, Apr 15. Analytical Chemistry. 78:2810-2815., Number 8
AbstractDifferent G-quadruplex structures for the human telomeric sequence d(T(2)AG(3))(4) in vitro have been documented in the presence of sodium and potassium. Verification of the G-quadruplex structures in human telomeres in vivo is the main issue in establishing the biological function of the G-quadruplex structures in telomeres as well as the development of anticancer agents. Here we have applied two-photon excitation fluorescence lifetime imaging microscopy to measure the fluorescence lifetime of the BMVC molecule upon interaction with various DNA structures. The distinction in lifetime measured with submicrometer spatial resolution in two-photon excitation fluorescence lifetime imaging microscopy provides a powerful approach not only to verify the existence of the antiparallel G-quadruplex structure in human telomeres but also to map its localizations in metaphase chromosomes.