Exchange-correlation energy in molecules: A variational quantum Monte Carlo study

Citation:
Hsing, CR, Chou MY, Lee TK.  2006.  Exchange-correlation energy in molecules: A variational quantum Monte Carlo study, Sep. Physical Review A. 74:10., Number 3

Abstract:

We have used the combination of the coupling-constant integration procedure and the variational quantum Monte Carlo method to study the exchange-correlation (XC) interaction in small molecules: Si-2, C2H2, C2H4, and C2H6. In this paper we report the calculated XC energy density, a central quantity in density functional theory, as deduced from the interaction between the electron and its XC hole integrated over the interaction strength. Comparing these "exact" XC energy densities with results using the local-density approximation (LDA), one can analyze the errors in this widely used approximation. Since the XC energy is an integrated quantity, error cancellation among the XC energy density in different regions is possible. Indeed we find a general error cancellation between the high-density and low-density regions. Moreover, the error distribution of the exchange contribution is out of phase with the error distribution of the correlation contribution. Similar to what is found for bulk silicon and an isolated silicon atom, the spatial variation of the errors of the LDA XC energy density in these molecules largely follows the sign and shape of the Laplacian of the electron density. Some noticeable deviations are found in Si-2 in which the Laplacian peaks between the atoms, while the LDA error peaks in the regions "behind" atoms where a good portion of the charge density originates from an occupied 1 sigma(u) antibonding orbital. Our results indicate that, although the functional form could be quite complex, an XC energy functional containing the Laplacian of the energy is a promising possibility for improving LDA.

Notes:

ISI Document Delivery No.: 091ZPTimes Cited: 3Cited Reference Count: 48Cited References: Cancio AC, 2006, PHYS REV B, V74 NEEDS RJ, 2004, CASINO VERSION 1 7 U Gonze X, 2002, COMP MATER SCI, V25, P478, DOI 10.1016/S0927-0256(02)00325-7 LESTER WA, 2002, RECENT ADV QUANTUM 2 Cancio AC, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.115112 Puzder A, 2001, PHYS REV A, V64 Nekovee M, 2001, PHYS REV LETT, V87, DOI 10.1103/PhysRevLett.87.036401 Foulkes WMC, 2001, REV MOD PHYS, V73, P33, DOI 10.1103/RevModPhys.73.33 PERDEW JP, 2001, AIP C P, V577 Proynov E, 2000, J CHEM PHYS, V113, P10013, DOI 10.1063/1.1321309 Perdew JP, 1999, PHYS REV LETT, V82, P5179, DOI 10.1103/PhysRevLett.82.5179 Kent PRC, 1999, PHYS REV B, V59, P12344, DOI 10.1103/PhysRevB.59.12344 KRIEGER JB, 1999, ELECT CORRELATIONS M Van Voorhis T, 1998, J CHEM PHYS, V109, P400, DOI 10.1063/1.476577 Hood RQ, 1998, PHYS REV B, V57, P8972, DOI 10.1103/PhysRevB.57.8972 Fuchs M, 1998, PHYS REV B, V57, P2134, DOI 10.1103/PhysRevB.57.2134 Filatov M, 1998, PHYS REV A, V57, P189, DOI 10.1103/PhysRevA.57.189 Hood RQ, 1997, PHYS REV LETT, V78, P3350, DOI 10.1103/PhysRevLett.78.3350 Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.78.1396 LESTER WA, 1997, RECENT ADV QUANTUM M Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865 Filippi C, 1996, J CHEM PHYS, V105, P213, DOI 10.1063/1.471865 GROSSMAN JC, 1995, PHYS REV LETT, V75, P3870, DOI 10.1103/PhysRevLett.75.3870 GROSSMAN JC, 1995, PHYS REV LETT, V74, P1323, DOI 10.1103/PhysRevLett.74.1323 UMRIGAR CJ, 1994, PHYS REV A, V50, P3827, DOI 10.1103/PhysRevA.50.3827 HAMMOND BL, 1994, MONTE CARLO METHODS ENGEL E, 1993, PHYS REV B, V47, P13164, DOI 10.1103/PhysRevB.47.13164 GORLING A, 1993, PHYS REV B, V47, P13105, DOI 10.1103/PhysRevB.47.13105 GARCIA A, 1992, PHYS REV B, V46, P9829, DOI 10.1103/PhysRevB.46.9829 FAHY S, 1990, PHYS REV LETT, V65, P1478, DOI 10.1103/PhysRevLett.65.1478 SCHMIDT KE, 1990, J CHEM PHYS, V93, P4172, DOI 10.1063/1.458750 PARR RG, 1989, DENSITY FUNCTIONAL T, P186 BECKE AD, 1988, PHYS REV A, V38, P3098, DOI 10.1103/PhysRevA.38.3098 UMRIGAR CJ, 1988, PHYS REV LETT, V60, P1719, DOI 10.1103/PhysRevLett.60.1719 LEE CT, 1988, PHYS REV B, V37, P785, DOI 10.1103/PhysRevB.37.785 LEVY M, 1985, PHYS REV A, V32, P2010, DOI 10.1103/PhysRevA.32.2010 PERDEW JP, 1985, PHYS REV LETT, V55, P1665, DOI 10.1103/PhysRevLett.55.1665 HARRIS J, 1984, PHYS REV A, V29, P1648, DOI 10.1103/PhysRevA.29.1648 NORTHRUP JE, 1983, PHYS REV A, V28, P1945, DOI 10.1103/PhysRevA.28.1945 REYNOLDS PJ, 1982, J CHEM PHYS, V77, P5593, DOI 10.1063/1.443766 PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048 HAMANN DR, 1979, PHYS REV LETT, V43, P1494, DOI 10.1103/PhysRevLett.43.1494 ANDERSON JB, 1976, J CHEM PHYS, V65, P4121, DOI 10.1063/1.432868 GUNNARSSON O, 1976, PHYS REV B, V13, P4274, DOI 10.1103/PhysRevB.13.4274 VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629 KOHN W, 1965, PHYS REV, V140, P1133 HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864 KATO T, 1957, COMMUN PUR APPL MATH, V10, P151, DOI 10.1002/cpa.3160100201Hsing, C. R. Chou, M. Y. Lee, T. K.AMERICAN PHYSICAL SOCCOLLEGE PK

Website