Publications

User warning: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ')) ORDER BY timestamp DESC' at line 1 query: SELECT timestamp FROM views_content_cache WHERE (()) ORDER BY timestamp DESC in _db_query() (line 169 of /var/www/html/iams/project/includes/database.mysqli.inc).
Export 804 results:
Sort by: Author Title Type [ Year  (Desc)]
2012
Lin, Y-C, Lin C-Y, Ho YK.  2012.  Spectral data of helium atoms with screened Coulomb potentials using the B-spline approach. Physical Review A. 85:042516., Number 4: APS Abstract2012_11.pdf

n/a

Chen, YC, Hsu YK, Lin YG, Chen LC, Chen KH.  2012.  Spontaneous synthesis and electrochemical characterization of nanostructured MnO2 on nitrogen-incorporated carbon nanotubes. Int. J. of Electrochem..
Chou, CT, Lin CH, Tai Y, C.H.Liu, Chen LC, Chen KH.  2012.  Stacking orientation mediation of pentacene and derivatives for highopen-circuit voltage organic solar cells. J. Phys. Chem. Lett.. 3:1079-1083.
Wu, CT, Chu MW, Liu CP, Chen KH, Chen LC, Chen CW, Chen CH.  2012.  Studies of electronic excitations of rectangular ZnOnanorods by electron energy-loss spectroscopy. Plasmonics. 7:123-130.
Chien, CT, Li SS, Lai WJ, Yeh YC, Chen HA, Chen LC, Chen KH, T.Nemoto, Isoda S, Chen M, Fujita T, Chhowalla M, Chen CW.  2012.  Tunable photoluminescence from graphene oxide. Angewandte Chemie. 51:6662-6666.
Lin, YG, Hsu YK, Chen YC, Chen SY, Chen LC, Chen KH.  2012.  Visible-light-driven photocatalytic carbon-doped porous ZnO nanoarchitectures for solar water-splitting. Nanoscale. 4:6515-6519.
Chang, ST, Wang CH, Du HY, Hsu HC, Kang CM, Chen CC, Wu CS, Yen SC, Huang WF, Chen LC, Lin MC, Chen KH.  2012.  Vitalizing fuel cells with a vitamin: pyrolyzed vitamin B12 as non-precious catalyst for enhanced oxygen reduction reaction. Energy & Environ. Sci.. 5:5305-5314.
Pan, P-R, Lin Y-S, Tsai M-K, Kuo J-L, Chai J-D.  2012.  Assessment of density functional approximations for the hemibonded structure of the water dimer radical cation. Phys. Chem. Chem. Phys.. 14:10705-10712.: The Royal Society of Chemistry AbstractWebsite

Due to the severe self-interaction errors associated with some density functional approximations{,} conventional density functionals often fail to dissociate the hemibonded structure of the water dimer radical cation (H2O)2+ into the correct fragments: H2O and H2O+. Consequently{,} the binding energy of the hemibonded structure (H2O)2+ is not well-defined. For a comprehensive comparison of different functionals for this system{,} we propose three criteria: (i) the binding energies{,} (ii) the relative energies between the conformers of the water dimer radical cation{,} and (iii) the dissociation curves predicted by different functionals. The long-range corrected (LC) double-hybrid functional{,} [small omega]B97X-2(LP) [J.-D. Chai and M. Head-Gordon{,} J. Chem. Phys.{,} 2009{,} 131{,} 174105]{,} is shown to perform reasonably well based on these three criteria. Reasons that LC hybrid functionals generally work better than conventional density functionals for hemibonded systems are also explained in this work.

Fan, X, Shen Z, Liu AQ, Kuo J-L.  2012.  Band gap opening of graphene by doping small boron nitride domains. Nanoscale. 4:2157-2165.: The Royal Society of Chemistry AbstractWebsite

Boron nitride (BN) domains are easily formed in the basal plane of graphene due to phase separation. With first-principles calculations{,} it is demonstrated theoretically that the band gap of graphene can be opened effectively around K (or K[prime or minute]) points by introducing small BN domains. It is also found that random doping with boron or nitrogen is possible to open a small gap in the Dirac points{,} except for the modulation of the Fermi level. The surface charges which belong to the [small pi] states near Dirac points are found to be redistributed locally. The charge redistribution is attributed to the change of localized potential due to doping effects. The band opening induced by the doped BN domain is found to be due to the breaking of localized symmetry of the potential. Therefore{,} doping graphene with BN domains is an effective method to open a band gap for carbon-based next-generation microelectronic devices.

Chang, C-H, Fan X, Li L-J, Kuo J-L.  2012.  Band Gap Tuning of Graphene by Adsorption of Aromatic Molecules. The Journal of Physical Chemistry C. 116:13788-13794., Number 25 AbstractWebsite

The effects of adsorbing simple aromatic molecules on the electronic structure of graphene were systematically examined by first-principles calculations. Adsorptions of different aromatic molecules borazine (B3N3H6), triazine (C3N3H3), and benzene (C6H6) on graphene have been investigated, and we found that molecular adsorptions often lead to band gap opening. While the magnitude of band gap depends on the adsorption site, in the case of C3N3H3, the value of the band gap is found to be up to 62.9 meV under local density approximation—which is known to underestimate the gap. A couple of general trends were noted: (1) heterocyclic molecules are more effective than moncyclic ones and (2) the most stable configuration of a given molecule always leads to the largest band gap. We further analyzed the charge redistribution patterns at different adsorption sites and found that they play an important role in controling the on/off switching of the gap—that is, the energy gap is opened if the charge redistributes to between the C–C bond when the molecule is adsorbing on graphene. These trends suggest that the different ionic ability of two atoms in heterocyclic molecules can be used to control the charge redistribution on graphene and thus to tune the gap using different adsorption conditions.

Pandey, MK, Lin Y-C, Ho YK.  2012.  Cross sections of charge exchange and ionization in O8++ H collision in Debye plasmas. Physics of Plasmas. 19:062104. Abstract
n/a
Chen, Y-H, Lee M-J, Hung W, Chen Y-C, Chen Y-F, Yu IA.  2012.  Demonstration of the Interaction between Two Stopped Light Pulses. Physical Review Letters. 108:173603. AbstractWebsite
n/a
Tsai, M-K, Kuo J-L, Lu J-M.  2012.  The dynamics and spectroscopic fingerprint of hydroxyl radical generation through water dimer ionization: ab initio molecular dynamic simulation study. Phys. Chem. Chem. Phys.. 14:13402-13408.: The Royal Society of Chemistry AbstractWebsite

Water decomposition process was investigated by ab initio molecular dynamic simulations using a model of (H2O)2+ clusters. The proton transfer (PT) process from the cationic H-donor water to the H-acceptor water for the formation of (HO[radical dot])[middle dot]H3O+ was predicted as about 90 fs on average calculated at CCSD level of theory. The valence-electron transfer (VET) process through the formation of hemibond interaction between neutral and cationic water{,} (H2O)2+{,} was also identified in several collected trajectories. Both PT and VET processes were found to propagate along two orthogonal reaction coordinates{,} the former was through an intermolecular hydrogen bond and the latter required oxygen-oxygen hemibonding. Significant difference of the theoretical electronic transitions along the VET trajectories was also observed in comparison with the non-VET cases{,} being calculated at SAC-CI level. The strong absorption features of hemibonding (H2O)2+ may introduce an interesting consideration for experimental design to monitor the water decomposition process.

Yeh, Y-Y, Chao M-H, Tsai P-Y, Chang Y-B, Tsai M-T, Lin K-C.  2012.  Gas-phase photodissociation of CH 3COCN at 308 nm by time-resolved Fourier-transform infrared emission spectroscopy. Journal of Chemical Physics. 136, Number 4 AbstractWebsite

By using time-resolved Fourier-transform infrared emission spectroscopy, the fragments of HCN(v 1, 2) and CO(v 1-3) are detected in one-photon dissociation of acetyl cyanide (CH 3COCN) at 308 nm. The S 1(A ″), 1(n O, π CO) state at 308 nm has a radiative lifetime of 0.46 ± 0.01 μs, long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of Ar collision-induced internal conversion is estimated to be (1-7) × 10 -12 cm 3 molecule -1 s -1. The measurements of O 2 dependence exclude the production possibility of these fragments via intersystem crossing. The high-resolution spectra of HCN and CO are analyzed to determine the ro-vibrational energy deposition of 81 ± 7 and 32 ± 3 kJmol, respectively. With the aid of ab initio calculations, a two-body dissociation on the energetic ground state is favored leading to HCN CH 2CO, in which the CH 2CO moiety may further undergo secondary dissociation to release CO. The production of CO 2 in the reaction with O 2 confirms existence of CH 2 and a secondary reaction product of CO. The HNC fragment is identified but cannot be assigned, as restricted to a poor signal-to-noise ratio. Because of insufficient excitation energy at 308 nm, the CN and CH 3 fragments that dominate the dissociation products at 193 nm are not detected. © 2012 American Institute of Physics.

Lin, M-C, Lin K-C.  2012.  Interaction between crystal violet and anionic surfactants at silica/water interface using evanescent wave-cavity ring-down absorption spectroscopy. Journal of Colloid and Interface Science. 379:41-47., Number 1 AbstractWebsite

Evanescent wave-cavity ring-down spectroscopy (EW-CRDS) is employed to characterize micellization of anionic surfactants and the related capability of removing cationic substance off the silica surface. Crystal violet (CV +) cationic dye is used as a molecular probe to effectively determine critical hemimicelle concentration (HMC) of surfactants on the surface. The HMC results are 1×10 -2, 4×10 -3, 8×10 -4, and 2.5×10 -4mol/L for sodium sulfate salts with a carbon-chain length of C-10, C-12, C-14, and C-16, respectively. A stronger hydrophobic interaction results in a less concentration required to undergo micellization. The HMC values on the surface are about half of those in solution. When NaCl solution is added, the electrolyte helps reduce the electrostatic repulsion between the anionic sulfate heads to facilitate the surfactant aggregation, and thus, the subsequent HMC is reduced. Furthermore, the probable phase change for dye-surfactant interactions on the surface at the concentration below HMC is observed, and the desorption rates of CV + are measured as a function of concentration and carbon-chain length of surfactants above HMC. Given each surfactant concentration at its respective HMC, the corresponding desorption rates are along the order of C-12<C-14<C-16<-C-10. The trend may be realized by two competing factors of hemimicelle size and number density. The consequences help with understanding how to apply surfactant in the chromatographic separation. © 2012 Elsevier Inc.

Chang, C-L, Tsai P-Y, Chang Y-P, Lin K-C.  2012.  Interfacial electron transfer from CdSe/ZnS quantum dots to TiO 2 nanoparticles: Size dependence at the single-molecule level. ChemPhysChem. 13:2711-2720., Number 11 AbstractWebsite

Electron transfer (ET) kinetics of CdSe/ZnS core/shell quantum dots (QDs) on bare coverslips and a TiO 2 nanoparticle-coated thin film has been investigated at the single-molecule level. The QDs prepared have three different diameters of 3.6, 4.6, and 6.4 nm. The trajectories of fluorescence intensity are acquired with respect to the arrival time. The on-time events and subsequent fluorescence lifetimes are shorter with decreasing size. Given the lifetime measurements for QDs on glass and TiO 2, the rate constant of ET from QDs to TiO 2 may be determined to be 1.3×10 7, 6.0×10 6, and 4.7×10 6 s -1 for the increasing sizes of the QDs. The plot of on-time probability density versus arrival time is characterized by power-law statistics in the short time region and a bending tail in the long time region. Marcus's ET model is employed to satisfactorily fit the bending tail behavior and to further calculate the ET rate constants. The theoretical counterparts for the different sizes are 1.4×10 7, 6.4×10 6, and 1.9×10 6 s -1, showing good agreement with the experimental results. Going dotty: Electron transfer kinetics of CdSe/ZnS core/shell quantum dots (QDs) on bare coverslips and on TiO 2 nanoparticle coated thin films have been investigated at the single-molecule level. As the size of the QDs changes, the shift in the valence band (VB) energy is less significant than the shift in the conduction band (CB) energy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Fan, H, Tsai P-Y, Lin K-C, Lin C-W, Yan C-Y, Yang S-W, Chang AHH.  2012.  Molecular elimination of Br2 in photodissociation of CH 2BrC(O)Br at 248 nm using cavity ring-down absorption spectroscopy. Journal of Chemical Physics. 137, Number 21 AbstractWebsite

The primary elimination channel of bromine molecule in one-photon dissociation of CH2BrC(O)Br at 248 nm is investigated using cavity ring-down absorption spectroscopy. By means of spectral simulation, the ratio of nascent vibrational population in v 0, 1, and 2 levels is evaluated to be 1:(0.5 ± 0.1):(0.2 ± 0.1), corresponding to a Boltzmann vibrational temperature of 581 ± 45 K. The quantum yield of the ground state Br2 elimination reaction is determined to be 0.24 ± 0.08. With the aid of ab initio potential energy calculations, the obtained Br2 fragments are anticipated to dissociate on the electronic ground state, yielding vibrationally hot Br2 products. The temperature-dependence measurements support the proposed pathway via internal conversion. For comparison, the Br2 yields are obtained analogously from CH3CHBrC(O)Br and (CH3)2CBrC(O)Br to be 0.03 and 0.06, respectively. The trend of Br2 yields among the three compounds is consistent with the branching ratio evaluation by Rice-Ramsperger-Kassel-Marcus method. However, the latter result for each molecule is smaller by an order of magnitude than the yield findings. A non-statistical pathway so-called roaming process might be an alternative to the Br2 production, and its contribution might account for the underestimate of the branching ratio calculations. © 2012 American Institute of Physics.

Kasai, T, Che D-C, Tsaia P-Y, Lina K-C.  2012.  Reaction dynamics with molecular beams and oriented molecular beams: A tool for looking closer to chemical reactions and photodissociations. Journal of the Chinese Chemical Society. 59:567-582., Number 5 AbstractWebsite

Experimental studies on reaction dynamics by use of molecular beams and oriented molecular beams are reviewed in order for looking closer to chemical reactions as well as photodissociations at the molecular level. We discuss about versatility and usefulness of the electrostatic hexapole sate-selector as a non-destructive selector for molecular structure analysis. Some experimental evidences on novel reaction dynamics in photodissociation and stereodynamics are presented followed by concluding remarks and future perspectives for controlling chemical reactions from the point of view of green chemistry, by manipulating molecular orientation without any catalyst nor by applying any external forces like intense electromagnetic field. © 2012 The Chemical Society Located in Taipei & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Tsai, P-Y, Lin K-C.  2012.  Rotational energy transfer of SH(X 2 Π, v′=0, J′=0.5-10.5) by collision with Ar: λ-doublet resolved transition propensity. ChemPhysChem. 13:274-280., Number 1 AbstractWebsite

The behavior of λ-doublet resolved rotational energy transfer (RET) by Ar collisions within the SH(X 2Π, v′=0) state is characterized. The matrix elements of terms in the interaction potential responsible for interference effects are calculated to explain the propensity rules for collision-induced transitions within and between spin-orbit manifolds. In this manner, the physical mechanisms responsible for the F 1-F 1, F 2-F 2, and F 1-F 2 transitions may be reasonably identified. As collision energy increases, the propensity for collisional population of the final e or f level is replaced by the e/f-conserving propensity. Such a change in propensity rule can be predicted in terms of energy sudden approximation at high J limit for the pure Hund's case scheme. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

2011
Wang, Y, Zhang F, Stumpf R, Lin P, Chou MY.  2011.  Catalytic effect of near-surface alloying on hydrogen interaction on the aluminum surface, May. Physical Review B. 83:5., Number 19 AbstractWebsite

A small amount of catalyst, such as Ti, was found to greatly improve the kinetics of hydrogen reactions in the prototypical hydrogen storage compound sodium alanate (NaAlH(4)). We propose a near-surface alloying mechanism for the rehydrogenation cycle based on a detailed analysis of available experimental data as well as first-principles calculations. The calculated results indicate that the catalyst remains at subsurface sites near the Al surface, reducing the dissociation energy barrier of H(2). The binding between Ti and Al modifies the surface charge distribution, which facilitates hydrogen adsorption and enhances hydrogen mobility on the surface.

Shiau, BW, Wu MC, Lin CC, Chen YC.  2011.  Low-Light-Level Cross-Phase Modulation with Double Slow Light Pulses, May. Physical Review Letters. 106:4., Number 19 AbstractWebsite

We report on the first experimental demonstration of low-light-level cross-phase modulation (XPM) with double slow light pulses based on the double electromagnetically induced transparency (EIT) in cold cesium atoms. The double EIT is implemented with two control fields and two weak fields that drive populations prepared in the two doubly spin-polarized states. Group velocity matching can be obtained by tuning the intensity of either of the control fields. The XPM is based on the asymmetric M-type five-level system formed by the two sets of EIT. Enhancement in the XPM by group velocity matching is observed. Our work advances studies of low-light-level nonlinear optics based on double slow light pulses.

Lin, CT, Tseng TY, Wang ZF, Chang TC.  2011.  Structural Conversion of Intramolecular and Intermolecular G-Quadruplexes of bcl2mid: The Effect of Potassium Concentration and Ion Exchange, Mar 17. Journal of Physical Chemistry B. 115:2360-2370., Number 10 AbstractWebsite

The gel assay, circular dichroism, and differential scanning calorimetry results all demonstrate that a major monomer component of bcl2mid exists at low [K(+)] and an additional dimer component appears at high [K(+)]. This implies that bcl2mid is a good candidate for elucidating the mechanisms of structural conversion between different G-quadruplexes. We further discovered that the conversion between the monomer and dimer forms of bcl2mid does not occur at room temperature but is detected when heated above the melting point. In addition, the use of the lithium cation to keep the same ionic strength in a K(+) solution favors the formation of the bcl2mid dimer. We also found that the bcl2mid dimer is more stable than the monomer. However, after the bcl2mid monomer is formed in a K(+) solution, there is no appreciable structural conversion from the monomer to the dimer detected with addition of Li(+) at room temperature. Furthermore, the spectral changes of bcl2mid when transitioning from sodium form to potassium form take place upon K(+) titration. The absence of the dimer form for bcl2mid after the direct addition of 150 mM [K(+)] at room temperature suggests that the spectral changes are not due to rapid unfolding and refolding. In addition, this work reveals the conditions that would be useful for NMR studies of G-quadruplexes.

Lee, CM, Lee RCH, Ruan WY, Chou MY.  2011.  Low-lying spectra of massless Dirac electron in magnetic dot and ring (vol 96, 212101, 2010), Jul. Applied Physics Letters. 99:1., Number 1 AbstractWebsite
n/a
Liu, HJ, Chou JP, Li RW, Wei CM, Miki K.  2011.  Trimeric precursors in formation of Al magic clusters on a Si(111)-7 x 7 surface, Feb. Physical Review B. 83:6., Number 7 AbstractWebsite

The formation process of Al magic clusters on the Si(111)-7 x 7 surface was investigated by means of a variable-temperature scanning tunneling microscope (STM) in situ and was interpreted using density-functional theory (DFT) calculations. At a growth temperature of 450 degrees C, Al atoms hopped among the corner, center, and T4 sites and also across the dimer rows on the Si(111)-7 x 7 surface. At low coverage below 0.08 ML, a single Al atom was adsorbed on the corner or center site. When the coverage was increased to 0.08 ML, Al dimers and trimers appeared, and Al magic clusters were also observed. However, no Al tetramers or pentamers were experimentally confirmed. Careful analysis of STM images suggests that Al trimers could be key precursors for the formation of Al magic clusters, and DFT calculations verified this interpretation. Total-energy calculation results using DFT reveal that this is due to the small energy gain from Al trimer to Al tetramer. These results are important for understanding the atomic structure and the formation mechanism of the magic clusters on the Si(111)-7 x 7 surface.