Publications

User warning: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ')) ORDER BY timestamp DESC' at line 1 query: SELECT timestamp FROM views_content_cache WHERE (()) ORDER BY timestamp DESC in _db_query() (line 169 of /var/www/html/iams/project/includes/database.mysqli.inc).
Export 804 results:
Sort by: Author Title Type [ Year  (Desc)]
2011
R. S. Chen*, Yang TH, Chen HY, Chen LC, Chen* KH, Yang YJ, Su CH, Lin CR.  2011.  Photoconduction mechanism of oxygen sensitization in InN nanowires. Nanotechnology. 22:425702.
Hwang, JS, Kao MC, Shiu JM, Fan CN, Ye SC, Yu WS, Lin TY, Chattopadhyay S, Chen LC, Chen KH.  2011.  Photocurrent mapping in high efficiency radial p-n junction silicon nanowire solar cells using atomic force microscopy. J. Phys. Chem. C. 115:21981-21986.
Lin, C-Y, Ho YK.  2011.  The photoionization of excited hydrogen atom in plasmas. Computer Physics Communications. 182:125–129., Number 1: Elsevier Abstract2011_10.pdf

n/a

Hu, MS, Kuo CC, Wu CT, Chen CW, Ang PK, Loh KP, Chen KH, Chen LC.  2011.  The production of SiC nanowalls sheathed with a few layers of strained graphene and their use in heterogeneous catalysis and sensing applications. Carbon. 49:4911-4919.
Chung, YL, Peng X, Liao YC, Yao S, Chen L-C, Chen K-H, Feng ZC.  2011.  Raman scattering and Rutherford backscattering studies on InN films grown byplasma-assisted molecular beam epitaxy. Thin Solid Films. 519:6778.
Zheng, AM, Deng F, Liu SB.  2011.  Regioselectivity of carbonium ion transition states in zeolites. Catalysis Today. 164:40-45.
Sakthivel, A, Huang SJ, Yen HL, Wu PH, Cheng CL, Liu SB.  2011.  Replication of Bimodal Porous Carbon Material from Mesoporous/Microporous Aluminosilicate Composite. Nanoscience and Nanotechnology Letters. 3:788-793.
Hsu, YK, Chen YC, Lin YG, Chen LC, Chen KH.  2011.  Reversible phase transformation of MnO2nanosheets in electrochemical capacitor investigated by in-situ Raman spectroscopy. Chem. Comm.. 47:1252-1254.
Li, CC, Chen YW, Lin RJ, Chang CC, Chen KH, H.P.Lin, Chen LC.  2011.  Self-reductive mesoporous CuOx/Fe/silicate nanocomposite as a highly active and stable catalyst for methanol reforming. Chem. Comm.. 47:9414-9416.
Tsai, C-C, Chiang P-L, Sun C-J, Lin T-W, Tsai M-H, Chang Y-C, Chen Y-T.  2011.  Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection. Nanotechnology. 22:135503.view pdf
Lee, YY, Tu KH, Yu CC, Li SS, Hwang JY, Lin CC, Chen KH, Chen LC, Chen HL, Chen CW.  2011.  Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method. ACS Nano. 5:6564-6570.
Lin, C-H, Yeh W-T, Sun C-L, Shen J-L, Lee J-H, Chen L-C, Wang J-K, Chen* K-H.  2011.  Tuning energy-level in magnesium modified Alq3. J. Appl. Phys.. 109:083541.
Chou, CT, Lin CH, Wu MH, Cheng TW, Lee JH, Liu CHJ, Tai Y, Chattopadhyay S, Wang JK, Chen KH, Chen LC.  2011.  Tuning open-circuit voltage in organic solar cells by magnesium modified Alq3. J. Appl. Phys.. 110:083104.
Junaid, M, Lundin D, Palisaitis J, Hsiao CL, Darakchieva V, Jensen J, Persson POA, Sandstrom P, Lai WJ, Chen LC, Chen KH, Helmersson U, Hultman L, Birch J.  2011.  Two-domain formation during the epitaxial growth of GaN (0001) on c-plane Al2O3 (0001) by high power impulse magnetron sputtering. J. Appl. Phys.. 110:123519.
Wu, C-C, Lin H-C, Chang Y-B, Tsai P-Y, Yeh Y-Y, Fan H, Lin K-C, Francisco JS.  2011.  Br 2 molecular elimination in photolysis of (COBr) 2 at 248 nm by using cavity ring-down absorption spectroscopy: A photodissociation channel being ignored. Journal of Chemical Physics. 135, Number 23 AbstractWebsite

A primary dissociation channel of Br 2 elimination is detected following a single-photon absorption of (COBr) 2 at 248 nm by using cavity ring-down absorption spectroscopy. The technique contains two laser beams propagating in a perpendicular configuration. The tunable laser beam along the axis of the ring-down cell probes the Br 2 fragment in the B 3Π + ou-X 1Σ g + transition. The measurements of laser energy- and pressure-dependence and addition of a Br scavenger are further carried out to rule out the probability of Br 2 contribution from a secondary reaction. By means of spectral simulation, the ratio of nascent vibrational population for v = 0, 1, and 2 levels is evaluated to be 1:(0.65 ± 0.09):(0.34 ± 0.07), corresponding to a Boltzmann vibrational temperature of 893 ± 31 K. The quantum yield of the ground state Br 2 elimination reaction is determined to be 0.11 ± 0.06. With the aid of ab initio potential energy calculations, the pathway of molecular elimination is proposed on the energetic ground state (COBr) 2 via internal conversion. A four-center dissociation mechanism is followed synchronously or sequentially yielding three fragments of Br 2 + 2CO. The resulting Br 2 is anticipated to be vibrationally hot. The measurement of a positive temperature effect supports the proposed mechanism. © 2011 American Institute of Physics.

Tsai, P-Y, Lin K-C.  2011.  Doublet rotational energy transfer of the SH (X 2Π, v′′ = 0) state by collisions with Ar. Physical Chemistry Chemical Physics. 13:8857-8868., Number 19 AbstractWebsite

The rotational energy transfer (RET) by Ar collisions within the SH X 2Π (v′′ = 0, J′′ = 0.5-10.5) state is characterized. The integral cross sections as a function of collision energy for each rotational transition are calculated using a quantum scattering method in which the constructed potential energy functions are based on a ground state potential energy surface (PES) reported previously. On the other hand, a laser-induced excitation fluorescence technique is employed to monitor the relaxation of the rotational population as a function of photolysis-probe delay time following the photodissociation of H2S at 248 nm. The rotational population evolution is comparable to its theoretical counterpart based on calculated Λ-resolved RET rate constants. The propensity in Λ-resolved RET transitions is found to approximately resemble the case of OH(X 2Π, v′′ = 0) + Ar. The Λ-averaged RET collisions are also analyzed and result in several propensity rules in the transitions. Most propensity rules are similar to those observed in the collisions of SH(A 2Σ+) by Ar. However, the behavior of the conserving ratio, defined as rate constants for spin-orbit conserving transition divided by those for spin-orbit changing transition, shows distinct difference from those described by Hund’s case (b). © the Owner Societies.

Liu, C-Y, Tsai M-T, Tsai P-Y, Liu Y-T, Chen SY, Chang AHH, Lin K-C.  2011.  Gas-phase photodissociation of CH3CHBrCOCl at 248 nm: Detection of molecular fragments by time-resolved FT-IR spectroscopy. ChemPhysChem. 12:206-216., Number 1 AbstractWebsite

By employing time-resolved Fourier transform infrared emission spectroscopy, the fragments HCl (v=1-3), HBr (v=1), and CO (v=1-3) are detected in one-photon dissociation of 2-bromopropionyl chloride (CH3CHBrCOCl) at 248 nm. Ar gas is added to induce internal conversion and to enhance the fragment yields. The time-resolved high-resolution spectra of HCl and CO were analyzed to determine the rovibrational energy deposition of 10.0A ±0.2 and 7.4A ±0.6 kcal mol-1, respectively, while the rotational energy in HBr is evaluated to be 0.9A ±0.1 kcal mol-1. The branching ratio of HCl(v>0)/HBr(v>0) is estimated to be 1:0.53. The bond selectivity of halide formation in the photolysis follows the same trend as the halogen atom elimination. The probability of HCl contribution from a hot Cl reaction with the precursor is negligible according to the measurements of HCl amount by adding an active reagent, Br2, in the system. The HCl elimination channel under Ar addition is verified to be slower by two orders of magnitude than the Cl elimination channel. With the aid of ab initio calculations, the observed fragments are dissociated from the hot ground state CH3CHBrCOCl. A two-body dissociation channel is favored leading to either HCl+CH3CBrCO or HBr+CH2CHCOCl, in which the CH 3CBrCO moiety may further undergo secondary dissociation to release CO. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Chang, H-C, Chang S-C, Hung T-C, Jiang J-C, Kuo J-L, Lin SH.  2011.  A High-Pressure Study of the Effects of TiO2 Nanoparticles on the Structural Organization of Ionic Liquids. The Journal of Physical Chemistry C. 115:23778-23783., Number 48 AbstractWebsite

The local structures between nano-TiO2 and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI+TFS–) and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMI+TFS–) were investigated using high-pressure infrared spectroscopy. No significant changes in C–H spectral features of EMI+TFS– were observed in the presence of nano-TiO2 under ambient pressure. As the EMI+TFS–/nano-TiO2 mixture was compressed to 0.3 GPa, the imidazolium C–H absorptions became two sharp bands at 3108 and 3168 cm–1, respectively, and the alkyl C–H stretching absorption exhibits a new band at 3010 cm–1 associated with a weaker band at 3028 cm–1. It appears that pressure stabilizes the isolated conformations due to pressure-enhanced imidazolium C–H–-nano-TiO2 interactions. Our results also reveal that alkyl C–H groups play non-negligible roles at the conditions of high pressures. The results of BMI+TFS–/nano-TiO2 are remarkably different from what is revealed for EMI+TFS–/nano-TiO2. The spectral features and band frequencies of BMI+TFS–/nano-TiO2 are almost identical to those of pure BMI+TFS– under various pressures. This study demonstrates that changes to the alkyl chain length of the cation could be made to control the order and strength of ionic liquid/nano-TiO2 interactions.

Kao, M-J, Chen C-H, Tsai P-Y, Lim T-S, Lin K-C, Luh T-Y.  2011.  Hydrogen-bonding-induced one-handed helical polynorbornenes appended with chiral alaninegland. Macromolecular Chemistry and Physics. 212:2328-2338., Number 21 AbstractWebsite

Polynorbornenes appended with anthracene and chiral alanine linkers are synthesized. Hydrogen bonding between the adjacent bisamidic linkers brings adjacent anthracene chromophores in a more suitable orientation for exciton coupling and renders one-handed helical structures for these polymers. Excimer formation is observed from their emission spectra. Monoamidic linkers provide only one hydrogen bond, which would be less robust and result in much lower circular dichroic response. Hydrogen bonding between the adjacent chiral alanine linkers brings appended anthracene in a more suitable orientation for exciton coupling and excimer formation, rendering one-handed helical structures in polynorbornenes. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Chen, S-Y, Tsai P-Y, Lin H-C, Wu C-C, Lin K-C, Sun BJ, Chang AHH.  2011.  I2 molecular elimination in single-photon dissociation of CH2I2 at 248 nm by using cavity ring-down absorption spectroscopy. Journal of Chemical Physics. 134, Number 3 AbstractWebsite

Following single-photon dissociation of CH2I2 at 248 nm, I2 molecular elimination is detected by using cavity ring-down absorption spectroscopy. The technique comprises two laser beams propagating in a perpendicular configuration, in which a tunable laser beam along the axis of the ring-down cell probes the I2 fragment in the B 3 ou + - X 1 g + transition. The nascent vibrational populations for v 0, 1, and 2 levels are obtained with a population ratio of 1:(0.65 0.10):(0.30 0.05), corresponding to a Boltzmann-like vibrational temperature of 544 73 K. The quantum yield of the ground state I2 elimination reaction is determined to be 0.0040 0.0025. With the aid of ab initio potential energy calculations, the pathway of molecular elimination is proposed on the energetic ground state CH2I2 via internal conversion, followed by asynchronous three-center dissociation. A positive temperature effect supports the proposed mechanism. © 2011 American Institute of Physics.

Chao, M-H, Tsai P-Y, Lin K-C.  2011.  Molecular elimination of methyl formate in photolysis at 234 nm: Roaming vs. transition state-type mechanism. Physical Chemistry Chemical Physics. 13:7154-7161., Number 15 AbstractWebsite

Ion imaging coupled with (2 + 1) resonance-enhanced multiphoton ionization (REMPI) technique is employed to probe CO(v″ = 0) fragments at different rotational levels following photodissociation of methyl formate (HCOOCH 3) at 234 nm. When the rotational level, J″CO, is larger than 24, only a broad translational energy distribution extending beyond 70 kcal mol-1 with an average energy of about 23 kcal mol -1 appears. The dissociation process is initiated on the energetic ground state HCOOCH3 that surpasses a tight transition state along the reaction coordinate prior to breaking into CO + CH3OH. This molecular dissociation pathway accounts for the CO fragment with larger rotational energy and large translational energy. As J″CO decreases, a bimodal distribution arises with one broad component and the other sharp component carrying the average energy of only 1-2 kcal mol-1. The branching ratio of the sharp component increases with a decrease of J″CO; (7.3 ± 0.6)% is reached as the image is probed at J″CO = 10. The production of a sharp component is ascribed to a roaming mechanism that has the following features: a small total translational energy, a low rotational energy partitioning in CO, but a large internal energy in the CH3OH co-product. The internal energy deposition in the fragments shows distinct difference from those via the conventional transition state. © the Owner Societies 2011.

Zhang, W, Lin C-T, Liu K-K, Tite T, Su C-Y, Chang C-H, Lee Y-H, Chu C-W, Wei K-H, Kuo J-L, Li L-J.  2011.  Opening an Electrical Band Gap of Bilayer Graphene with Molecular Doping. ACS Nano. 5:7517-7524., Number 9 AbstractWebsite

The opening of an electrical band gap in graphene is crucial for its application for logic circuits. Recent studies have shown that an energy gap in Bernal-stacked bilayer graphene can be generated by applying an electric displacement field. Molecular doping has also been proposed to open the electrical gap of bilayer graphene by breaking either in-plane symmetry or inversion symmetry; however, no direct observation of an electrical gap has been reported. Here we discover that the organic molecule triazine is able to form a uniform thin coating on the top surface of a bilayer graphene, which efficiently blocks the accessible doping sites and prevents ambient p-doping on the top layer. The charge distribution asymmetry between the top and bottom layers can then be enhanced simply by increasing the p-doping from oxygen/moisture to the bottom layer. The on/off current ratio for a bottom-gated bilayer transistor operated in ambient condition is improved by at least 1 order of magnitude. The estimated electrical band gap is up to ∼111 meV at room temperature. The observed electrical band gap dependence on the hole-carrier density increase agrees well with the recent density-functional theory calculations. This research provides a simple method to obtain a graphene bilayer transistor with a moderate on/off current ratio, which can be stably operated in air without the need to use an additional top gate.