Publications

Export 2 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
M
Manavalan, S, Veerakumar P, Chen S-M, Murugan K, Lin K-C.  2019.  Binder-Free Modification of a Glassy Carbon Electrode by Using Porous Carbon for Voltammetric Determination of Nitro Isomers. ACS Omega. 4(5):8907-8918. AbstractWebsite

In this study, Liquidambar formosana tree leaves have been used as a renewable biomass precursor for preparing porous carbons (PCs). The PCs were produced by pyrolysis of natural waste of leaves after 10% KOH activation under a nitrogen atmosphere and characterized by a variety of state-of-the-art techniques. The PCs possess a large surface area, micro-/mesoporosity, and functional groups on its surface. A glassy carbon electrode modified with high PCs was explored as an efficient binder-free electrocatalyst material for the voltammetric determination of nitro isomers such as 3-nitroaniline (3-NA) and 4-nitroaniline (4-NA). Under optimal experimental conditions, the electrochemical detection of 3-NA and 4-NA was found to have a wide linear range of 0.2-115.6 and 0.5-120 μM and a low detection limit of 0.0551 and 0.0326 μM, respectively, with appreciable selectivity. This route not only enhanced the benefit from biomass wastes but also reduced the cost of producing electrode materials for electrochemical sensors. Additionally, the sensor was successfully applied in the determination of nitro isomers even in the presence of other common electroactive interference and real samples analysis (beverage and pineapple jam solutions). Therefore, the proposed method is simple, rapid, stable, sensitive, specific, reproducible, and cost-effective and can be applicable for real sample detection. © 2019 American Chemical Society.

Muthiah, B, Paredes-Roibás D, Kasai T, Lin K-C.  2019.  Photodissociation of CH2BrI using cavity ring-down spectroscopy: in search of a BrI elimination channel. Physical Chemistry Chemical Physics. 21(26):13943-13949. AbstractWebsite

Photodissociation of CH2BrI was investigated in search of unimolecular elimination of BrI via a primary channel using cavity ring-down absorption spectroscopy (CRDS) at 248 nm. The BrI spectra were acquired involving the first three ground vibrational levels corresponding to A3Π1 ← X1Σ+ transition. With the aid of spectral simulation, the BrI rotational lines were assigned. The nascent vibrational populations for v′′ = 0, 1, and 2 levels are obtained with a population ratio of 1:(0.58 ± 0.10):(0.34 ± 0.05), corresponding to a Boltzmann-like vibrational temperature of 713 ± 49 K. The quantum yield of the ground state BrI elimination reaction is determined to be 0.044 ± 0.014. The CCSD(T)//B3LYP/MIDI! method was employed to explore the potential energy surface for the unimolecular elimination of BrI from CH2BrI.