Publications

User warning: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ')) ORDER BY timestamp DESC' at line 1 query: SELECT timestamp FROM views_content_cache WHERE (()) ORDER BY timestamp DESC in _db_query() (line 169 of /var/www/html/iams/project/includes/database.mysqli.inc).
Export 1106 results:
Sort by: Author Title Type [ Year  (Desc)]
2020
Billo, T, Shown I, kumar Anbalagan A, Effendi TA, Sabbah A, Fu F-Y, Chu C-M, Woon W-Y, Chen R-S, Lee C-H, Chen K-H, Chen L-C.  2020.  A mechanistic study of molecular CO2 interaction and adsorption on carbon implanted SnS2 thin film for photocatalytic CO2 reduction activity, 2020. 72:104717. AbstractWebsite

Gas-phase photocatalytic reactions to convert carbon dioxide and water into oxygen and hydrocarbons are the foundation of life on earth. However, the efficiency of photosynthesis is relatively low (~1%), which leaves much room for artificial photosynthesis to reach the benchmark of the solar cells (>15%). In this work, carbon implanted SnS2 thin films (C–SnS2) were prepared to study photocatalytic activity and adsorbate-catalyst surface interactions during CO2 photoreduction. The electron density distribution in C–SnS2 and its contribution toward the photogenerated charge transfer process has been analyzed by the angle-dependent X-ray absorption near-edge structure (XANES) study. The C–SnS2 surface affinity toward the CO2 molecule was monitored by in-situ dark current and Raman spectroscopy measurements. By optimizing the dose during ion implantation, SnS2 thin film with 1 wt% carbon incorporation shows 108 times enhancement in the CO2 conversion efficiency and more than 89% product selectivity toward CH4 formation compared with the as-grown SnS2 without carbon incorporation. The improved photocatalytic activity can be ascribed to enhanced light harvesting, pronounced charge-transfer between SnS2 and carbon with improved carrier separation and the availability of highly active carbon sites that serve as favorable CO2 adsorption sites.

Howlader, S, Vasudevan R, Jarwal B, Gupta S, Chen K-H, Sachdev K, Banerjee MK.  2020.  Microstructure and mechanical stability of Bi doped Mg2Si0.4Sn0.6 thermoelectric material, 2020. 818:152888. AbstractWebsite

Bi doped Mg2Si0.4Sn0.6 had been synthesised in a high energy ball mill followed by compaction using a sintering hot press. The structural and compositional characterization of sintered mass indicated the formation of a highly densified single-phase product. The microstructure of the hot-pressed samples had been critically assessed. Thermoelectric properties were measured between room temperature and 723 K. A decrease in electrical conductivity was found with the increase in temperature but the Seebeck coefficient showed a reverse trend justifying the attainment of degenerate semiconducting behaviour. Meanwhile, the lattice thermal conductivity was subdued to 1.5 W/mK at 623 K. However, the highest zT value of 0.8 was achieved at 723 K. Moreover, the detailed X-ray photoelectron spectroscopic analysis was carried for the determination of binding energy of the constituent elements in the experimental alloy; it also provided the correct estimation of atomic percentage of the concerned elements. The Raman spectrum revealed a shift in F2g peak with respect to that of Mg2Sn and Mg2Si in correspondence with the composition of the synthesised alloy. The synthesised alloy showed micro and nano hardness of 3.7 and 4.03 GPa respectively, which implies that good mechanical strength could be achieved in the synthesised alloy.

Huang, W-F, Chang S-T, Huang H-C, Wang C-H, Chen L-C, Chen K-H, Lin MC.  2020.  On the Reduction of O2 on Cathode Surfaces of Co–Corrin and Co–Porphyrin: A Computational and Experimental Study on Their Relative Efficiencies in H2O/H2O2 Formation, 2020. The Journal of Physical Chemistry CThe Journal of Physical Chemistry C. 124(8):4652-4659.: American Chemical Society AbstractWebsite
n/a
Lien, H-T, Chang S-T, Chen P-T, Wong DP, Chang Y-C, Lu Y-R, Dong C-L, Wang C-H, Chen K-H, Chen L-C.  2020.  Probing the active site in single-atom oxygen reduction catalysts via operando X-ray and electrochemical spectroscopy, 2020. 11(1):4233. AbstractWebsite

Nonnoble metal catalysts are low-cost alternatives to Pt for the oxygen reduction reactions (ORRs), which have been studied for various applications in electrocatalytic systems. Among them, transition metal complexes, characterized by a redox-active single-metal-atom with biomimetic ligands, such as pyrolyzed cobalt–nitrogen–carbon (Co–Nx/C), have attracted considerable attention. Therefore, we reported the ORR mechanism of pyrolyzed Vitamin B12 using operando X-ray absorption spectroscopy coupled with electrochemical impedance spectroscopy, which enables operando monitoring of the oxygen binding site on the metal center. Our results revealed the preferential adsorption of oxygen at the Co2+ center, with end-on coordination forming a Co2+-oxo species. Furthermore, the charge transfer mechanism between the catalyst and reactant enables further Co–O species formation. These experimental findings, corroborated with first-principle calculations, provide insight into metal active-site geometry and structural evolution during ORR, which could be used for developing material design strategies for high-performance electrocatalysts for fuel cell applications.

Bayikadi, KS, Wu CT, Chen L-C, Chen K-H, Chou F-C, Sankar R.  2020.  Synergistic optimization of thermoelectric performance of Sb doped GeTe with a strained domain and domain boundaries, 2020. Journal of Materials Chemistry A. 8(10):5332-5341.: The Royal Society of Chemistry AbstractWebsite

In addition to the Ge-vacancy control of GeTe, the antimony (Sb) substitution of GeTe for the improvement of thermoelectric performance is explored for Ge1−xSbxTe with x = 0.08–0.12. The concomitant carrier concentration (n) and the aliovalent Sb ion substitution led to an optimal doping level of x = 0.10 to show ZT ∼ 2.35 near ∼800 K, which is significantly higher than those single- and multi-element substitution studies of the GeTe system reported in the literature. In addition, Ge0.9Sb0.1Te demonstrates an impressively high power factor of ∼36 μW cm−1 K−2 and a low thermal conductivity of ∼1.1 W m−1 K−1 at 800 K. The enhanced ZT level for Ge0.9Sb0.1Te is explained through a systematic investigation of micro-structural change and strain analysis from room temperature to 800 K. A significant reduction of lattice thermal conductivity (κlat) is identified and explained by the Sb substitution-introduced strained and widened domain boundaries for the herringbone domain structure of Ge0.9Sb0.1Te. The Sb substitution created multiple forms of strain near the defect centre, the herringbone domain structure, and widened tensile/compressive domain boundaries to support phonon scattering that covers a wide frequency range of the phonon spectrum to reduce lattice thermal conductivity effectively.

Wei, Y-C, Hsiao Y-F, Wu B-H, Tsai P-J, Chen Y-C.  2020.  Broadband coherent optical memory based on electromagnetically induced transparency. Phys. Rev. A. 102, 063720Link
Tsai, Y‐F, Wei P‐C, Chang L, Wang K‐K, Yang C‐C, Lai Y‐C, Hsing C‐R, Wei C‐M, He J, Snyder JG, Wu H‐J.  2020.  Compositional Fluctuations Locked by Athermal Transformation Yielding High Thermoelectric Performance in GeTe. Advanced Materials.
Lee, H-W, Hsing C-R, Chang C-M, Wei C-M.  2020.  Electronic structures of 24-valence-electron full Heusler compounds investigated by density functional and GW calculations. Journal of Physics: Condensed Matter. 32:175501. Abstract

n/a

Hsu, L-Y*, Yen H-C, Lee M-W, Sheu Y-lin, Chen P-C, Dai H*, Chen C-C*.  2020.  Large-Scale Inhomogeneous Fluorescence Plasmonic Silver Chips: Origin and Mechanism. Chem. 6:1-13. AbstractWebsite

Summary Large-scale inhomogeneous plasmonic metal chips have been demonstrated as a promising platform for biochemical sensing, but the origin of their strong fluorescence enhancements and average gap dependence is a challenging issue due to the complexity of modeling tremendous molecules within inhomogeneous gaps. To address this issue, we bridged microscopic mechanisms and macroscopic observations, developed a kinetic model, and experimentally investigated the fluorescence enhancement factors of IR800-streptavidin immobilized on metal nanoisland films (NIFs). Inspired by the kinetic model, we controlled the distribution of IR800-streptavidin within the valleys of NIFs by regioselective modification and achieved the fluorescence intensity enhancement up to 488-fold. The kinetic model allows us to qualitatively explain the mechanism of fluorescence intensity enhancements and quantitatively predict the trend of experimental enhancement factors, thereby determining the design principles of the plasmonic metal chips. Our study provides one key step further toward the sensing applications of large-scale plasmonic metal chips.

Wei, Y-C, Lin S-X, Tsai P-J, Chen Y-C.  2020.  Memory-based optical polarization conversion in a double-Λ atomic system with degenerate Zeeman states. Sci Rep. 10, 13990 (2020) Link
C.R.P.Inbaraj, Mathew RJ, Kumar UR, Sankar R, Kataria M, Lin HY, Cheng H-Y, Lin K-H, Lin H-I, Liao Y-M, Chou FC, Chen Y-T, Lee C-H, Chen Y-F.  2020.  Modulating Charge Separation with Hexagonal Boron Nitride Mediation in Vertical Van der Waals Heterostructures. ACS Appl. Mater. Interfaces . 12:26213−26221.view
Chuang, Y-T, Chen S-D, Huang W-C, Shen T-L, Chang M-S, Chen Y-F, Hsieh Y-P, Chang Y-H, Hofmann M.  2020.  Multilevel Optical Labeling by Spectral Luminescence Control in Nanodiamond Color Centers. ACS Applied Materials & Interfaces. 12(43):49006-49011.
Y.-C.Chang, Tseng C-A, Lee C-P, Ann S-B, Huang Y-J, Ho KC, Chen Y-T.  2020.  N- and S-codoped graphene hollow nanoballs as an efficient Pt-free electrocatalyst for dye-sensitized solar cells. J.Pow. Sour.. :227470.view
Tsai, P-J, Hsiao Y-F, Chen Y-C.  2020.  Quantum storage and manipulation of heralded single photons in atomic quantum memories. Phys. Rev. Research. 2(033155)Link
C.-Y.Dai, Wang W-C, Tseng C-A, Ding F-C, Chen Y-T, Chen C-C.  2020.  Spatial Confinement Approach Using Ni to Modulate Local Carbon Supply for the Growth of Uniform Transfer-Free Graphene Monolayers. J. Phys. Chem. C . 124:23094−23105.view.pdf
R.J.Mathew, Lee CP, Tseng CA, Chand PK, Huang Y-J, Chen H-T, Ho K-C, Anbalagan AK, Lee C-H, Chen Y-T.  2020.  Stoichiometry-Controlled MoxW1−xTe2 Nanowhiskers: A Novel Electrocatalyst for Pt-Free Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces . 12:34815−34824.view
Zhong, P, Liu C-H, Chen* Y-T, Yu** T-Y.  2020.  The study of HIV-1 Vpr-membrane and Vpr-hVDAC-1 interactions by Graphene Field-Effect Transistor Biosensors. ACS Applied Bio Materials. 3(9):6351-6357.
P.Zhong, C.-H.Liu, Y.-T.Chen, T.-Y.Yu.  2020.  The Study of HIV‑1 Vpr-Membrane and Vpr-hVDAC‑1 Interactions by Graphene Field-Effect Transistor Biosensors. ACS Appl. Bio Mater.. 3:6351−6357.view
Jen, HH, Chang M-S, Lin G-D, Chen YC.  2020.  Subradiance dynamics in a singly excited chirally coupled atomic chain. PHYSICAL REVIEW A. 101(023830)Link
Jen, HH, Chang M-S, Lin G-D, Chen Y-C.  2020.  Subradiance dynamics in a singly excited chirally coupled atomic chain. Phys. Rev. A. 101(2):023830.
C.-A.Tseng, K.Sahoo P, P.Lee C-, T.Lin Y-, H.Xu J-, Y.-T.Chen.  2020.  Synthesis of CoO-Decorated Graphene Hollow Nanoballs for HighPerformance Flexible Supercapacitors. ACS Appl. Mater. Interfaces . 12:40426−40432.view
Tsai, P-J, Wei Y-C, Wu B-H, Li S-X, Chen Y-C.  2020.  Theoretical study on memory-based optical converter with degenerate Zeeman states. Phys. Rev. A. 100(063843)Link
Wang, S, Lee M-W, Chuang Y-T, Scholes GD *, Hsu L-Y*.  2020.  Theory of molecular emission power spectra. I. Macroscopic quantum electrodynamics formalism. J. Chem. Phys.. 153:184102., Number 18 AbstractWebsite

n/a