Publications

Export 6 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T [U] V W X Y Z   [Show ALL]
U
Dhenadhayalan, N, Yadav K, Sriram MI, Lee H-L, Lin K-C.  2017.  Ultra-sensitive DNA sensing of a prostate-specific antigen based on 2D nanosheets in live cells. Nanoscale. 9:12087-12095., Number 33 AbstractWebsite

Herein, we report ultra-sensitive sensing of a prostate-specific antigen (PSA), which is used as a biomarker to detect prostate cancer, using a molybdenum series (MoO3, MoS2, and MoSe2) of two-dimensional nanosheets (2D NSs). Moreover, the design of a 2D NS-based PSA aptamer sensor system was demonstrated based on a fluorescence turn-on mechanism in the presence of a target. The 2D NSs acted as an excellent sensing platform in which the PSA aptamer was adsorbed on the NSs and subsequent energy transfer between them led to fluorescence quenching of the aptamer. The detection limit of PSA was achieved to be 13 pM for MoO3 NSs, whereas the MoS2 and MoSe2 systems exhibited a detection limit of 72 and 157 pM, respectively. To the best of our knowledge, this is the first report on the ultra-sensitive detection of a 2D NS-based aptamer sensor. The in vitro bioimaging measurements were performed using confocal fluorescence microscopy. Herein, PSA detection was successfully demonstrated in human embryonic kidney 293T (HEK) live cells. Moreover, the MoO3, MoS2, and MoSe2 NSs exhibit excellent biocompatibility and low toxicity; thus, these 2D NSs can be used as a promising sensor platform to detect prostate cancer. This journal is © The Royal Society of Chemistry.

Veerakumar, P., MCPLSS-M.  2020.  Ultrafine Bi-Sn nanoparticles decorated on carbon aerogels for electrochemical simultaneous determination of dopamine (neurotransmitter) and clozapine (antipsychotic drug). AbstractWebsite

This present study describes the synthesis of ultrafine Bi-Sn nanoparticles decorated on carbon aerogels (Bi-Sn NP/CAG) as a nanocomposite for the electrochemical simultaneous determination of dopamine (DA) and clozapine (CLZ). The typical characterization techniques, such as XRD, Raman, BET, FT-IR, TGA, XPS, and FE-SEM/TEM, showed useful insights into the crystal phase and morphology of Bi-Sn NP/CAG. Integrated Bi-Sn NP/CAG built into a cost-effective screen printed carbon electrode (SPCE) offers a high electrochemical surface area (ECSA) compared to unmodified, Bi-Sn, and CAG/SPCEs, such that it favourably allowed the binding of DA and CLZ molecules onto the surface at the Bi-Sn/CAG, which was demonstrated by cyclic and differential pulse voltammetry techniques. As a result, the DA and CLZ sensing exhibited low detection limits (DL, 4.6 and 97.6 nM (S/N = 3)), and sensitivity (3.402 and 0.4 μA μM-1 cm-2) over a wide linear range (0.02-97.59 and 0.5-2092 μM), respectively. To go a step further, the Bi-Sn NP/CAG/SPCE was applied for the simultaneous determination of DA and CLZ which featured lower DL (23.1 and 31.3 nM (S/N = 3)), and sensitivity (0.4979 and 0.04 μA μM-1 cm-2) over a wide linear range (2-182 and 10-910 μM), respectively. The selectivity for DA and CLZ in the presence of a 10-fold concentration of their potentially interfering active species was demonstrated. Finally, this sensing methodology enables the rapid electrochemical determination of the amount of DA and CLZ in a rat brain region serum sample with successful recovery outcomes. © The Royal Society of Chemistry.

Veerakumar, P., SCLAS-M.  2020.  Ultrafine gold nanoparticle embedded poly(diallyldimethylammonium chloride)-graphene oxide hydrogels for voltammetric determination of an antimicrobial drug (metronidazole). AbstractWebsite

In this work, gold nanoparticle (Au NP) decorated poly(diallyldimethylammonium chloride) (PDDA) functionalized graphene hydrogel (Au NP@PDDA/GH) nanocomposites were fabricated. The resulting materials were characterized by a variety of analytical and spectroscopic techniques. Electrochemical performances of the prepared composites were examined by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and linear sweep voltammetry (LSV). The Au NPs were decorated uniformly and densely on the GO@PDDA composite material based on the electrostatic attraction and this new hierarchical nanostructure can provide a more favourable microenvironment for electron transfer. Under the optimized conditions, the Au NP@PDDA/GH nanocomposite was used as a novel sensing probe for metronidazole (MZ) which was found to have the concentration range of 0.4-656.4 μM with a correlation coefficient (0.999, limit of detection (LOD) based on (LOD = 3k/∂) of 0.097 μM), and a sensitivity of 4.286 μA μM−1. With satisfactory selectivity, reproducibility, and stability, the nanostructure we proposed offered an alternative for electrode fabrication and MZ sensing. Au NP@PDDA/GH was also applied to the reduction of MZ and pharmacy tablets by NaBH4under ambient conditions. Thus, Au NP@PDDA/GH application provides simplicity, reliability, durability, and low cost benefits. © The Royal Society of Chemistry 2020.

Veerakumar, P, Rajkumar C, Chen S-M, Thirumalraj B, Lin K-C.  2018.  Ultrathin 2D graphitic carbon nitride nanosheets decorated with silver nanoparticles for electrochemical sensing of quercetin. Journal of Electroanalytical Chemistry. 826:207-216. AbstractWebsite

In this work, we describe a facile fabrication of silver nanoparticles decorated on porous ultrathin two dimensional (2D) graphitic carbon nitride nanosheets (AgNPs@g-CN) via chemical approach, which was characterized by various analytical techniques including cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry. As expected, the AgNPs@g-CN modified glassy carbon electrode (AgNPs@g-CN/GCE) exhibited remarkable electrocatalytic activity towards the detection of quercetin (QCR) with a wide linear range from 1.0 × 10−8 to 1.2 × 10−4 mol L−1 and a lower detection limit of 6.0 × 10−9 mol L−1. Besides, the amperometric results revealed that the peak current for QCR could not affect upon the sequential additions of electroactive interfering species such as metal ions (300 μM), biomolecules (100 μM), and other flavonoids (50 μM) indicating the selectivity of the proposed sensor. Moreover, the AgNPs@g-CN modified electrode displayed higher stability and reproducibility towards the detection of QCR. The AgNPs@g-CN/GCE could also be used to detect QCR in green apple (GA) samples with satisfactory recoveries for practical applications. The concepts behind the novel architecture to modify electrodes can be potentially harnessed in other electrochemical sensors and photocatalysis applications. © 2018 Elsevier B.V.

Dhenadhayalan, N, Lin K-C, Suresh R, Ramamurthy P.  2016.  Unravelling the Multiple Emissive States in Citric-Acid-Derived Carbon Dots. Journal of Physical Chemistry C. 120:1252-1261., Number 2 AbstractWebsite

Steady-state and time-resolved fluorescence spectroscopy techniques were used to probe multifluorescence resulting from citric-acid-derived carbon dots (C-dots). Commonly, both carboxyl-/amine-functionalized C-dots exhibit three distinct emissive states corresponding to the carbon-core and surface domain. The shorter-wavelength fluorescence (below 400 nm) originates from the carbon-core absorption band at ∼290 nm, whereas the fluorescence (above 400 nm) is caused by two surface states at ∼350 and 385 nm. In addition to three emissive states, a molecular state was also found in amine-functionalized C-dots. Time-resolved emission spectra (TRES) and time-resolved area normalized emission spectra (TRANES) were analyzed to confirm the origin of excitation wavelength-dependent fluorescence of C-dots. The surface functional groups on the C-dots are capable of regulating the electron transfer to affect the multifluorescence behavior. The electron transfer takes place from the carbon-core to surface domain by the presence of -COOH on the surface and vice versa for the case of -NH2 present on the surface. To the best of our knowledge, this is the first report that the multiemissive states are probed in C-dots systems using TRES and TRANES analyses, and related fluorescence mechanisms are verified clearly. © 2015 American Chemical Society.

Che, D.-C., NCLKAPMH-P.  2020.  UV Photodissociation of Halothane in a Focused Molecular Beam: Space-Speed Slice Imaging of Competitive Bond Breaking into Spin-Orbit-Selected Chlorine and Bromine Atoms. AbstractWebsite

A molecular beam of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) is focused by a hexapolar electrostatic field and photolyzed by UV laser radiation at 234 nm. Angular and speed distributions of chlorine and bromine photofragments emitted from halothane are measured for both spin-orbit states independently. Although the dissociation energy of the C-Cl bond is larger than that of C-Br, the relative yield of Cl to Br was found to be approximately 2. Measured speed and angular distributions of atomic fragments show distinct kinetic energy release and scattering characteristics: for bromine, observed fast and aligned fragments exhibit a signature of a direct mode of dissociation for the C-Br bond, via the electronically excited potential energy surface denoted nσ*(C-Br), of repulsive nature; for chlorine, a variation in the features is observed for the dissociation pathway through nσ*(C-Cl), from a modality similar to the bromine case, leading to fragments with appreciable kinetic energy release and pronounced directionality, to a modality involving slow products, nearly isotopically distributed. The origin of this behavior can be attributed to nonadiabatic interaction operating between the nσ*(C-Br) and nσ*(C-Cl) surfaces. These results are not only relevant for a detailed understanding of adiabatic versus diabatic coupling mechanisms in the manifold of excited states populated by photon absorption, but they also point out the possibility of selectively inducing specific dissociation pathways, even when involving energetically unfavorable outcomes, such as, in this case, the prevailing rupture of the stronger C-Cl bond against that of the weaker C-Br bond. Copyright © 2020 American Chemical Society.