Publications

Export 8 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
S
Dhenadhayalan, N, Lee H-L, Yadav K, Lin K-C, Lin Y-T, Chang AHH.  2016.  Silicon Quantum Dot-Based Fluorescence Turn-On Metal Ion Sensors in Live Cells. ACS Applied Materials and Interfaces. 8:23953-23962., Number 36 AbstractWebsite

Multiple sensor systems are designed by varying aza-crown ether moiety in silicon quantum dots (SiQDs) for detecting individual Mg2+, Ca2+, and Mn2+ metal ions with significant selectivity and sensitivity. The detection limit of Mg2+, Ca2+, and Mn2+ can reach 1.81, 3.15, and 0.47 μM, respectively. Upon excitation of the SiQDs which are coordinated with aza-crown ethers, the photoinduced electron transfer (PET) takes place from aza-crown ether moiety to the valence band of SiQDs core such that the reduced probability of electron-hole recombination may diminish the subsequent fluorescence. The fluorescence suppression caused by such PET effect will be relieved after selective metal ion is added. The charge-electron binding force between the metal ion and aza-crown ether hinders the PET and thereby restores the fluorescence of SiQDs. The design of sensor system is based on the fluorescence "turn-on" of SiQDs while in search of the appropriate metal ion. For practical application, the sensing capabilities of metal ions in the live cells are performed and the confocal image results reveal their promising applicability as an effective and nontoxic metal ion sensor. © 2016 American Chemical Society.

Veerakumar, P, Dhenadhayalan N, Lin K-C, Liu S-B.  2017.  Silver Nanoparticles Modified Graphitic Carbon Nitride Nanosheets as a Significant Bifunctional Material for Practical Applications. ChemistrySelect. 2:1398-1408., Number 4 AbstractWebsite

Amine-functionalized graphitic carbon nitride (NH2/GCN) nanosheets photoluminescence, catalytic properties and excellent water dispersion stability were prepared and characterized by a variety of different analytical and spectroscopic techniques. The well-dispersed NH2/GCN nanosheets were found to exhibit remarkable pH sensing sensitivity at an ambient temperature with desirable broad detection range (1 ≤ pH ≤ 12). Moreover, upon incorporating silver nanoparticles (Ag NPs), the Ag-NH2/GCN nanocomposites showed excellent performances for catalytic reduction of 4-nitrophenol (4-NP) in NaBH4 with a superior rate constant (k) of 0.1594 s-1 within as short as 30 s. The NH2/GCN and Ag-NH2/GCN nanocomposites reported herein therefore render prospective applications as sensitive pH and practical catalytic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Veerakumar, P, Salamalai K, Thanasekaran P, Lin K-C.  2018.  Simple Preparation of Porous Carbon-Supported Ruthenium: Propitious Catalytic Activity in the Reduction of Ferrocyanate(III) and a Cationic Dye. ACS Omega. 3:12609-12621., Number 10 AbstractWebsite

The present study involves the synthesis, characterization, and catalytic application of ruthenium nanoparticles (Ru NPs) supported on plastic-derived carbons (PDCs) synthesized from plastic wastes (soft drink bottles) as an alternative carbon source. PDCs have been further activated with CO2 and characterized by various analytical techniques. The catalytic activity of Ru@PDC for the reduction of potassium hexacyanoferrate(III), (K3[Fe(CN)6]), and new fuchsin (NF) dye by NaBH4 was performed under mild conditions. The PDCs had spherical morphology with an average size of 0.5 μm, and the Ru NP (5 ± 0.2 nm) loading (4.01 wt %) into the PDC provided high catalytic performance for catalytic reduction of ferrocyanate(III) and NF dye. This catalyst can be recycled more than six times with only a minor loss of its catalytic activity. In addition, the stability and reusability of the Ru@PDC catalyst are also discussed. Copyright © 2018 American Chemical Society.

Vinothkumar, V., SCVLAS-M.  2020.  Sr-Doped NiO3 nanorods synthesized by a simple sonochemical method as excellent materials for voltammetric determination of quercetin. AbstractWebsite

The simple and novel surfactant-free synthesis of flower-like strontium-doped nickel oxide nanorods (SNO NRs) via a simple sonochemical co-precipitation method was used for electrochemical sensing of quercetin (QCT). The structure and morphology of the as-synthesized flower-like SNO NRs were characterized using various spectroscopic techniques. Then, CV, EIS, and DPV were used to examine their electrochemical properties. The effective loading concentration, pH, scan rate and stability of the SNO NR-modified electrodes were studied. Under optimized conditions, the electrochemical detection of QCT demonstrated a low detection potential of 0.3 V (vs. Ag/AgCl), and achieved a higher oxidation peak current compared to those of other modified electrodes in PB (pH 5.0). The voltammetric current response was found to linearly increase with an increasing concentration range from 0.01-68.53 μM, along with a low detection limit of 1.98 nM, and a high sensitivity of 2.1055 μA mM cm-2. The sensor also shows good selectivity and satisfactory recovery for real sample (apple and grape juice) analysis. © 2020 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

Nakamura, M, Yang, S. J, Lin K-C, Kasai T, Che D-C, Lombardi A, Palazzetti F, Aquilanti V.  2017.  Stereodirectional images of molecules oriented by a variable-voltage hexapolar field: Fragmentation channels of 2-bromobutane electronically excited at two photolysis wavelengths. Journal of Chemical Physics. 147, Number 1 AbstractWebsite

The asymmetric-top molecule 2-bromobutane is oriented by means of a hexapole state selector; the angular distribution of the bromine atom photofragment, for the two fine-structure components, is acquired by velocity-map ion imaging. The molecular beam, spatially oriented along the time-of-flight axis, is intersected with a linearly polarized laser, whose polarization is tilted by 45° with respect to the detector surface. To obtain the mixing ratio of the perpendicular and parallel transitions, the fragment ion images and angular distributions can be appropriately simulated to give insight on the population mechanism of the specific electronic state involved at each selected excitation wavelength. The photofragment images obtained at 238.6 nm yielded an asymmetry factor β1 of 0.67, indicative of the extent of molecular orientation, and an anisotropy parameter β2 of 1.03, which is a signature of a prevailing parallel transition along the C-Br axis. When the photolysis wavelength is tuned to 254.1 nm, the corresponding angular distribution is less asymmetric (β1 = 0.24) and the obtained small value β2 = 0.12 is a characteristic of a predominantly perpendicular transition. The photofragment angular distributions are also affected by hexapole voltage, especially regarding the asymmetry factor, and this aspect provides information on the effect of molecular orientation. © 2017 Author(s).

Palazzetti, F, Lombardi A, Yang S-J, Nakamura M, Kasai T, Lin K-C, Che D-C, Tsai P-Y.  2016.  Stereodirectional photodynamics: Experimental and theoretical perspectives. AIP Conference Proceedings. 1790 Abstract

Hexapole oriented 2-bromobutane is photodissociated and detected by a slice-ion-imaging technique at 234 nm. The laser wavelength corresponds to the C - Br bond breaking with emission of a Br atom fragment in two accessible fine-structure states: the ground state Br (2P3/2) and the excited state Br (2P1/2), both observable separately by resonance-enhanced multiphoton ionization (REMPI). Orientation is evaluated by time-of-flight measurements combined with slice-ion-imaging. © 2016 Author(s).

Nakamura, M, Chang H-P, Lin K-C, Kasai T, Che D-C, Palazzetti F, Aquilanti V.  2019.  Stereodynamic Imaging of Bromine Atomic Photofragments Eliminated from 1-Bromo-2-methylbutane Oriented via Hexapole State Selector. Journal of Physical Chemistry A. 123(31):6799-6811. AbstractWebsite

Both single-laser and two-laser experiments were conducted to look into the ion-imaging of Br*(2P1/2) and Br(2P3/2) photofragmented from 1-bromo-2-methylbutane in the range 232-240 nm via a detection scheme of (2+1) resonance-enhanced multiphoton ionization. The angular analysis of these photofragment distributions yields the anisotropy parameter β = 1.88 ± 0.06 for the Br∗ excited state which arises from a parallel transition, while β = 0.63 ± 0.09 for the Br ground state indicates the contribution from both a perpendicular transition and a non-adiabatic transition. When a hexapole coupled with an orienting field was implemented, the parent molecules are spatially oriented to yield an orientation efficiency |«cos θ »| of 0.15. Besides the χ angle between the recoil velocity v and the transition dipole moment μ, orienting molecules allows for the evaluation of the angle α between v and the permanent molecular dipole moment d. The angular analysis of Br∗ photofragment distribution yields χ = 11.5° and α in the range from 160° to 180° with weak dependency. In the two-laser experiments, the angular anisotropy of Br photofragment distribution was found to be smaller (0.38 ± 0.10) when the photolysis wavelength was red-shifted to 240 nm, suggesting the increasing contributions from perpendicular transitions. © 2019 American Chemical Society.

Kasai, T, Che D-C, Tsai P-Y, Lin K-C, Palazzetti F, Aquilanti V.  2015.  Stereodynamics: From elementary processes to macroscopic chemical reactions. AIP Conference Proceedings. 1702 Abstract

This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed. © 2015 AIP Publishing LLC.