Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Wu, PY, Huang HH, Lin KC, Tzeng WB.  2017.  Two-color resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of 4-chlorostyrene. Chemical Physics Letters. 682:34-37. AbstractWebsite

The first electronic excitation and adiabatic ionization energies of 35Cl and 37Cl 4-chlorostyrene were similar, with values of 33,977 ± 2 and 67,972 ± 5 cm−1, respectively. The general features in the obtained vibronic and cation spectra of the two isotopologues were similar. A frequency shift of 1–5 cm−1 was observed on many active vibrations of the 35Cl and 37Cl isotopologues of 4-chlorostyrene in the S1 and D0 states. This frequency difference at each mode may reflect the degree of Cl atom involvement in the overall vibration. © 2017 Elsevier B.V.

2013
Hsu, M-Y, Tsai P-Y, Wei Z-R, Chao M-H, Zhang B, Kasai T, Lin K-C.  2013.  Competitive bond rupture in the photodissociation of bromoacetyl chloride and 2- and 3-bromopropionyl chloride: Adiabatic versus diabatic dissociation. ChemPhysChem. 14:936-945., Number 5 AbstractWebsite

Competitive bond dissociation mechanisms for bromoacetyl chloride and 2- and 3-bromopropionyl chloride following the 1[n(O) →π*(Cï£O)] transition at 234-235 nm are investigated. Branching ratios for C-Br/C-Cl bond fission are found by using the (2+1) resonance-enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the Cï£O chromophore. C-Cl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(Cï£O) and np(Cl)σ*(C-Cl) bands. In contrast, C-Br bond fission is subject to much weaker coupling between n(O)π*(Cï£O) and np(Br)σ*(C-Br). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2-bromopropionyl chloride, which leads to excited-state products. For 3-bromopropionyl chloride, the available energy is not high enough to reach the excited-state products such that C-Br bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted. Busted open: Insight into the mechanisms causing C-Cl and C-Br bond fission of bromoacetyl chloride and 2- and 3-bromopropionyl chloride by following the 1[n(O) →π*(Cï£O)] transition is obtained. The figure shows the center-of-mass translational energy distributions of ground-state Br formation through a diabatic pathway for the dissociation of 2-bromopropionyl chloride. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

2011
Wu, C-C, Lin H-C, Chang Y-B, Tsai P-Y, Yeh Y-Y, Fan H, Lin K-C, Francisco JS.  2011.  Br 2 molecular elimination in photolysis of (COBr) 2 at 248 nm by using cavity ring-down absorption spectroscopy: A photodissociation channel being ignored. Journal of Chemical Physics. 135, Number 23 AbstractWebsite

A primary dissociation channel of Br 2 elimination is detected following a single-photon absorption of (COBr) 2 at 248 nm by using cavity ring-down absorption spectroscopy. The technique contains two laser beams propagating in a perpendicular configuration. The tunable laser beam along the axis of the ring-down cell probes the Br 2 fragment in the B 3Π + ou-X 1Σ g + transition. The measurements of laser energy- and pressure-dependence and addition of a Br scavenger are further carried out to rule out the probability of Br 2 contribution from a secondary reaction. By means of spectral simulation, the ratio of nascent vibrational population for v = 0, 1, and 2 levels is evaluated to be 1:(0.65 ± 0.09):(0.34 ± 0.07), corresponding to a Boltzmann vibrational temperature of 893 ± 31 K. The quantum yield of the ground state Br 2 elimination reaction is determined to be 0.11 ± 0.06. With the aid of ab initio potential energy calculations, the pathway of molecular elimination is proposed on the energetic ground state (COBr) 2 via internal conversion. A four-center dissociation mechanism is followed synchronously or sequentially yielding three fragments of Br 2 + 2CO. The resulting Br 2 is anticipated to be vibrationally hot. The measurement of a positive temperature effect supports the proposed mechanism. © 2011 American Institute of Physics.

Chen, S-Y, Tsai P-Y, Lin H-C, Wu C-C, Lin K-C, Sun BJ, Chang AHH.  2011.  I2 molecular elimination in single-photon dissociation of CH2I2 at 248 nm by using cavity ring-down absorption spectroscopy. Journal of Chemical Physics. 134, Number 3 AbstractWebsite

Following single-photon dissociation of CH2I2 at 248 nm, I2 molecular elimination is detected by using cavity ring-down absorption spectroscopy. The technique comprises two laser beams propagating in a perpendicular configuration, in which a tunable laser beam along the axis of the ring-down cell probes the I2 fragment in the B 3 ou + - X 1 g + transition. The nascent vibrational populations for v 0, 1, and 2 levels are obtained with a population ratio of 1:(0.65 0.10):(0.30 0.05), corresponding to a Boltzmann-like vibrational temperature of 544 73 K. The quantum yield of the ground state I2 elimination reaction is determined to be 0.0040 0.0025. With the aid of ab initio potential energy calculations, the pathway of molecular elimination is proposed on the energetic ground state CH2I2 via internal conversion, followed by asynchronous three-center dissociation. A positive temperature effect supports the proposed mechanism. © 2011 American Institute of Physics.