Publications

Export 7 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J [K] L M N O P Q R S T U V W X Y Z   [Show ALL]
K
Kao, M-J, Chen C-H, Tsai P-Y, Lim T-S, Lin K-C, Luh T-Y.  2011.  Hydrogen-bonding-induced one-handed helical polynorbornenes appended with chiral alaninegland. Macromolecular Chemistry and Physics. 212:2328-2338., Number 21 AbstractWebsite

Polynorbornenes appended with anthracene and chiral alanine linkers are synthesized. Hydrogen bonding between the adjacent bisamidic linkers brings adjacent anthracene chromophores in a more suitable orientation for exciton coupling and renders one-handed helical structures for these polymers. Excimer formation is observed from their emission spectra. Monoamidic linkers provide only one hydrogen bond, which would be less robust and result in much lower circular dichroic response. Hydrogen bonding between the adjacent chiral alanine linkers brings appended anthracene in a more suitable orientation for exciton coupling and excimer formation, rendering one-handed helical structures in polynorbornenes. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Kasai, T, Che D-C, Tsai P-Y, Lin K-C, Palazzetti F, Aquilanti V.  2015.  Stereodynamics: From elementary processes to macroscopic chemical reactions. AIP Conference Proceedings. 1702 Abstract

This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed. © 2015 AIP Publishing LLC.

Kasai, T, Lin K-C.  2017.  Coordinate Analysis for Interpreting the Decoherence in the Coherent NO with Ar Collision: A Physico-mathematical Picture Using the Stereographic Projection and the Cusp Catastrophe. Journal of the Chinese Chemical Society. 64:25-35., Number 1 AbstractWebsite

We present here a physico-mathematical picture for explaining the unexpectedly large decoherence cross-section (almost 10 times larger than its gas-kinematic cross-section) recently observed by Ureña and coworkers in their scattering experiment involving a coherent NO beam with Ar gas. The present topological picture consists of a stereographic projection and the cusp catastrophe theory of Thom, and we find that this model enables us to clarify the origin of the collisional decoherence. From the view of the stereographic projection, we can naturally introduce the wave property originating from the singular point at the “North pole” on the circumference S1 coordinate corresponding to a critical point for the collisional decoherence (condition 1). This picture also predicts the sudden changes of wave-phase collapse due to network interaction in the many-body system (condition 2). Thus it is hoped that the model proposed by Ureña et al. based on the dipole-induced dipole interaction in the NO + Ar system could be modified through this picture by including interactions with many Ar atoms in the environment. One way to fill the gap between the single-pair interaction picture and the multiple interaction one would be to employ theoretical calculations by use of the density matrix theory with and without adding the second Ar atom to the NO–Ar system. The cusp catastrophe theory reinforces the necessity of some cooperative network interaction between the coherent NO molecule and many neighboring Ar atoms and provides a qualitative scenario in which the whole system leads to a sudden change of the collisional decoherence of NO as a function of the control parameters (a, b). At this stage, the present physico-mathematical picture cannot give any specific values of the decoherence distance by the theory itself, but it clearly provides us a new topological concept for clarifying the origin of collisional decoherence which is strongly connected with the complexity of the system. Thus it gives us a global guide map toward further clarification of the collisional decoherence phenomenon with the aid of more sophisticated quantum mechanical calculations in the future. © 2016 The Chemical Society Located in Taipei & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Kasai, T, Che D-C, Okada M, Tsai P-Y, Lin K-C, Palazzetti F, Aquilanti V.  2014.  Directions of chemical change: Experimental characterization of the stereodynamics of photodissociation and reactive processes. Physical Chemistry Chemical Physics. 16:9776-9790., Number 21 AbstractWebsite

This perspective article aims at accounting for the versatility of some current experimental investigations for exploring novel paths in chemical reactions. It updates a previous one [Phys. Chem. Chem. Phys., 2005, 5, 291] and is limited to work by the authors. The use of advanced molecular beam techniques together with a combination of modern tools for specific preparation, selection and detection permits us to discover new trends in reactivity in the gas phase as well as at interfaces. We specifically discuss new facets of stereodynamics, namely the effects of molecular orientation and alignment on reactive and photodissociation processes. Further topics involve roaming paths and triple fragmentation in photodissociation probed by imaging techniques, chirality effects in collisions and deviations from Arrhenius behavior in the temperature dependence of chemical reactions. © the Partner Organisations 2014.

Kasai, T, Che D-C, Tsai P-Y, Nakamura M, Muthiah B, Lin K-C.  2018.  Roaming and chaotic behaviors in collisional and photo-initiated molecular-beam reactions: a role of classical vs. quantum nonadiabatic dynamics. Rendiconti Lincei. 29:219-232., Number 2 AbstractWebsite

A new reaction scheme is proposed to account for roaming and chaotic behaviors in collisional and photo-initiated molecular-beam reactions, where nonadiabatic dynamics plays a key role and the collapse of superposition of wave functions is considered to be important in the beginning of the present scheme. Since the feature of molecular orbitals of reagents is crucial in reaction, we showed how to map out the spatial distribution of the relevant HOMO molecular orbitals of CH3Cl in the impact of fast electrons. We identified by experiment that the multiple overlap of nearby molecular orbitals affects even the vibrational motion of adjacent molecule DCl of the transient [ClDCl] chemical species. We also showed dynamical steric effects in the HBr + OH four-atom reaction as a manifestation of the nonadiabatic dynamics in complex systems. The roaming mechanism in the photo-initiated reaction of methyl formate is clarified in detail by experiment as well as the QCT trajectory calculation, where the conical intersection region plays an essential role. We suggest that two types of roaming trajectories coexist, i.e., deterministic and chaotic roaming trajectories based on classical trajectory calculations. To clarify the nonadiabatic dynamics in the roaming mechanism for non-collinear three-dimensional (3D) collisions, a new model of the 3D Polanyi rule is proposed as the extension of the well-established 2D Polanyi rule. In the 3D Polanyi rule, it is expected that the curvature and torsion of Frenet–Serret formulas in three-dimensional space would provide us key concepts in understanding reaction dynamics. © 2018, Accademia Nazionale dei Lincei.

Kasai, T, Che D-C, Tsaia P-Y, Lina K-C.  2012.  Reaction dynamics with molecular beams and oriented molecular beams: A tool for looking closer to chemical reactions and photodissociations. Journal of the Chinese Chemical Society. 59:567-582., Number 5 AbstractWebsite

Experimental studies on reaction dynamics by use of molecular beams and oriented molecular beams are reviewed in order for looking closer to chemical reactions as well as photodissociations at the molecular level. We discuss about versatility and usefulness of the electrostatic hexapole sate-selector as a non-destructive selector for molecular structure analysis. Some experimental evidences on novel reaction dynamics in photodissociation and stereodynamics are presented followed by concluding remarks and future perspectives for controlling chemical reactions from the point of view of green chemistry, by manipulating molecular orientation without any catalyst nor by applying any external forces like intense electromagnetic field. © 2012 The Chemical Society Located in Taipei & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Kasai, T, Muthiah B, Lin K-C.  2017.  Role of cooperative network interaction in transition region of roaming reactions: Non-equilibrium steady state vs. thermal equilibrium reaction scheme. AIP Conference Proceedings. 1906 Abstract

This paper proposes a new type of roaming mechanism. We find a signature of trajectory with chaotic behavior in the action-angle diagram of the H + H2 reaction on a LEP surface, namely the trajectory is found to be very sensitive to the initial angle variable which corresponds to the phase of the H2 vibration. The trajectory pattern switches from the direct to the complex forming mechanism, and vice versa, in the angle range (0 ∼ π). In the complex forming angle range, trajectories switch from reactive to non-reactive randomly and suddenly, as the result, we cannot predict the collision pattern from the initial conditions. Therefore, we may classify such trajectory as a new type of roaming with chaotic behavior, and it is different from the ordinary trajectory with deterministic behavior. This chaotic behavior could be due cooperative nearby network interaction (CNN effect). We also suggest that the KPP (Kolmogorow-Petrovsky-Piskounov) equation is useful to estimate the density gradient of the activated reagents, so that one can evaluate the branching ratio to various exit channels, such as triple fragmentation, tight transition state, or the roaming channel with the aid of the present classical trajectory calculation. © 2017 Author(s).